畜牧兽医学报  2018, Vol. 49 Issue (5): 971-985. DOI: 10.11843/j.issn.0366-6964.2018.05.012    PDF    
不同早期断奶日龄对舍饲肉用羔羊胃组织形态发育变化的影响
郭江鹏1,2, 潘建忠2,4, 李发弟2,3, 张元兴2,5, 杨宇泽1, 郝正里2     
1. 北京市畜牧总站, 北京 100107;
2. 甘肃农业大学动物科学技术学院, 兰州 730070;
3. 兰州大学草地农业科技学院, 兰州 730030;
4. 兰州市食品药品检验所, 兰州 730000;
5. 兰州正大有限公司, 兰州 730000
摘要:旨在研究早期断奶对舍饲羔羊复胃组织形态发育的影响。本研究选用甘肃肉用绵羊新品种育种群公羔(单羔)55只,分为3个处理,其中28日龄断奶组(A组)、42日龄断奶组(B组)各15只,对照组(不断奶,C组)25只,于7日龄开始补饲;A、B组分别于断奶后的第0、7、14天屠宰,每个屠宰日均同时屠宰对照组羔羊5只,采集瘤胃腹囊与背囊、网胃底、瓣胃和皱胃贲门腺区、胃底腺区、幽门腺区等用于测定相关组织形态学指标。结果表明,A组断奶7天,A组、B组断奶14天,瘤胃腹囊乳头高度显著高于C组(P < 0.05);断奶14天,A组瘤胃背囊乳头高度较断奶日的增长率明显高于B组(83.4% vs. 46.9%);A组、B组平均网胃胃底乳头高度明显大于C组(1 194.0 μm vs. 632.2 μm;953.1 μm vs. 661.3 μm);断奶14天,A组瓣胃角化层厚较断奶日的增长率高于B组(40.6% vs. 31.9%);断奶14天,B组皱胃贲门腺区黏膜厚显著高于C组(P < 0.05);A组、B组皱胃胃底腺区平均黏膜下层厚明显高于C组(326.8 μm vs. 245.2 μm;303.4 μm vs. 172.7 μm);A组、B组平均皱胃幽门腺区肌层厚明显高于C组(1 218.4 μm vs. 1 047.4 μm;1 466.3 μm vs. 1 253.7 μm)。在舍饲并于7日龄补饲条件下,早期断奶对羔羊瘤胃、网胃、瓣胃和皱胃组织形态学指标的发育主要呈现促进作用,28日龄断奶对羔羊复胃组织形态学发育的促进作用优于42日龄断奶。
关键词早期断奶    舍饲羔羊        组织形态    发育    
Effect of Different Early Weaned Day on Morphological Development of Stomach for Housed Lambs
GUO Jiang-peng1,2, PAN Jian-zhong2,4, LI Fa-di2,3, ZHANG Yuan-xing2,5, YANG Yu-ze1, HAO Zheng-li2     
1. Beijing General Station of Animal Husbandry Service, Beijing 100107, China;
2. College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
3. College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730030, China;
4. Lanzhou Institute for Food and Drug Control, Lanzhou 730000, China;
5. Lanzhou ChiaTai Co., LTD., Lanzhou 730000, China
Abstract: The objective of this study was to investigate the effect of early weaned on morphological development of stomach for housed lambs. Fifty-five male lambs (Gansu modern breeding sheep group, singleton) were divided into 3 treatments, 15 animals were used in group A (weaned at 28 d of age) and B (weaned at 42 d of age), respectively, 25 suckling lambs were used in group C (control). All lambs were raised with the supplementary feed from 7 d of age. Lambs were killed and sampled from the group A and B at 0, 7, 14 days after weaned, respectively, and lambs in the control(5 lambs) were killed and sampled at the same time. The morphological indexes of rumen ventral sac and dorsal sac, fundus reticuli, omasum, and cardiac, fundus, pyloric of abomasum were measured, respectively. The results showed that, group A was weaned for 7 days, group A and B were weaned for 14 days, the papilla height of the rumen ventral sac were significantly higher than that of group C(P < 0.05). The growth rate of the papilla height in rumen dorsal sac in group A was higher than that in group B(83.4% vs. 46.9%) at weaned for 14 days. The average papilla height of fundus reticuli in group A and B were higher than that in group C(1 194.0 μm vs. 632.2 μm; 953.1 μm vs. 661.3 μm). The growth rate of the epithelial thickness in omasum in group A was higher than that in group B (40.6% vs. 31.9%) at weaned for 14 days. And the mucosa thickness of cardiac gland in abomasums in group B was significantly higher than that in group C at weaned for 14 days (P < 0.05). The average submucosa thickness of fundus gland abomasum in group A and B were higher than that in group C(326.8 μm vs. 245.2 μm; 303.4 μm vs. 172.7 μm). And the average muscular thickness of pyloric gland abomasum in group A and B were higher than that in group C(1 218.4 μm vs. 1 047.4 μm; 1 466.3 μm vs. 1 253.7 μm). The result indicated that, with feasible raised and supplied the suited supplementary diet from 7 d of age, there were promotion for morphplogical development of stomach in lambs. And it had better promotion for the lambs weaned at 28 d of age than at 42 d of age for the morphplogical development of stomach.
Key words: early weaned     confined lamb     stomach     morphological     development    

结构是功能的前提和保障,只有在组织形态结构发育和完善的基础上,胃肠道才能发挥其正常的消化功能。胃组织形态的发育主要表现在解剖结构和生理的变化,如瘤胃重量、体积、胃壁组织和黏膜乳头等的变化[1]。有关影响反刍动物胃肠道组织形态发育因素的研究报道较多,主要集中在品种[2]、日龄[3-5]、断奶日龄[6-9]、饲粮的类型和结构[10-12]、主要营养物质及其水平[13-14]、饲粮中纤维含量和质量[15-17]、饲料添加剂[18-21]和代乳料[22]等方面。截止目前,有关不同早期断奶日龄对舍饲绵羔羊胃肠道组织形态学影响的系统研究较少,对复胃各部分胃壁的组织形态学影响研究更是鲜见报道,生产实践中缺乏基础数据,限制了早期断奶等技术的推广应用和普及,也使得针对性开发断奶羔羊饲粮缺乏相关的科学依据。

本研究以舍饲甘肃肉用绵羊新品种育种群公羔为试验动物,较为系统地研究了28和42日龄断奶对舍饲肉用羔羊各胃室组织形态变化的影响,旨在了解在舍饲条件下7日龄开始补饲,不同日龄早期断奶后绵羊羔羊胃肠道组织形态学的变化规律,以期为制定舍饲哺乳羔羊早期饲养管理策略,开发相应补饲技术和产品,实现绵羊羔羊早期培育和早期断奶等提供基础数据。

1 材料与方法 1.1 试验动物及设计

采用单因素分组试验设计。从甘肃省永昌肉用种羊场选择健康、生长发育正常的群饲甘肃肉用绵羊新品种选育群公羔(单羔)55只,按组间初生体重((3.43±1.15) kg)相近原则分为3个处理,其中28日龄断奶(A组)和42日龄断奶(B组)组各15只,正常吮乳组(不断奶,C组)25只。两处理组分别于断奶后0、7、14天屠宰,每个屠宰日均同时屠宰对照组羔羊5只。各处理组羔羊屠宰日龄及数量见表 1

表 1 各处理屠宰日龄及受试羔羊数 Table 1 Day of age and numbers of lambs sampled from each treatments
1.2 屠宰前试羊管理

羔羊出生后,执行羊场常规饲养管理规定,羔羊自由吮乳。从7日龄开始,在运动场设羔羊可自由出入、母羊无法接近的补饲槽和水槽,精料补充料(精料补充料组成及营养成分见表 2)和优质苜蓿干草分开盛放,参试羔羊自由采食饲草和饮水至断奶(屠宰)日龄。断奶组羔羊于断奶前1 d的20:00与母羊隔开,继续按照上述补饲方案饲喂至屠宰时间点。羔羊屠宰前不禁食饲草和饮水。

表 2 精料补充料组成和营养水平(风干基础)1 Table 2 Composition and nutrition level of concentrate supplement(air-dry basis)

苜蓿干草被铡短至3 cm左右,其营养成分(除干物质外,其它指标为风干基础)分别为干物质92.50%,粗蛋白质16.72%,粗脂肪2.16%,粗纤维17.44%,粗灰分10.69%,钙1.44%,磷0.91%。

1.3 胃组织样品采集与切片制作 1.3.1 屠宰、取样

称羔羊活体重量后,颈静脉放血致死。立即打开腹腔,按照《家畜解剖学及组织胚胎学》[24]所述,分离各胃室。用利剪分别从各试羊瘤胃背囊、瘤胃腹囊、网胃底、瓣胃和皱胃贲门腺区、胃底腺区和幽门腺区的相近区域取约1 cm2组织块用于制作组织切片。

将所采集的组织样块迅速放置于10%中性甲醛溶液中固定,以备制做组织切片。

中性甲醛溶液(混合固定液)配制:甲醛120 mL,加蒸馏水880 mL,磷酸二氢钠(NaH2PO4·H2O)4 g,磷酸氢二钠(Na2HPO4)13 g,混合均匀。

1.3.2 组织切片制作

按刘世新[25]所述方法进行操作。将已固定的组织块经水洗,进行梯度酒精脱水,二甲苯透明,石蜡包埋切片,切片厚度5~6 μm,HE染色,中性树胶封片。

1.4 测定指标与方法

用Motic系统显微镜(型号DMWB1 SERIES),根据切片内容及观察要求选定适宜物镜倍数后拍照,用显微镜自带测量软件进行测量。

从各部位组织切片中选取5个典型视野,进行以下相应指标的观察和测量。瘤胃测定背囊及腹囊乳头高、宽,固有层宽、肌层厚度、角化层厚、肌肉层厚;网胃底测定锥状乳头高、宽,固有层宽、肌层厚度、角化层厚、肌肉层厚;瓣胃大瓣叶测定中央肌层厚、角化层及肌层厚;皱胃各腺区测定黏膜、黏膜下层及肌层厚。

1.5 数据分析

用SPSS 19.0统计分析软件对数据进行单因素方差分析,差异显著时用Tukey(同质数据)或Tamhane’2法(不同质数据)作多重比较。试验结果以“Mean±SD”表示。以P≤0.01表示为差异极显著,以P≤0.05表示为差异显著,以0.05 < P≤0.10表示差异具有显著趋势。

2 结果 2.1 早期断奶舍饲羔羊瘤胃组织形态学变化 2.1.1 早期断奶舍饲羔羊瘤胃腹囊组织形态学变化

表 3可见,A组断奶7天,A组、B组断奶14天,瘤胃腹囊乳头高度显著高于C组(P < 0.05);断奶14天,乳头高度较断奶日的增长率A组明显高于B组(72.1% vs. 17.8%)。断奶14天,B组瘤胃腹囊乳头宽度显著大于C组(P < 0.05);A组平均乳头宽度明显大于C组(438.8 μm vs. 394.8 μm);断奶14天,乳头宽度较断奶日的增长率A组明显大于C组(34.8% vs. 7.3%),A组与B组相近(34.8% vs. 32.1%)。断奶14天,B组瘤胃腹囊角化层厚显著高于C组(P < 0.05);A组平均角化层厚明显大于C组(126.3 μm vs. 110.4 μm);断奶14天,角化层厚较断奶日的增长率A组明显高于C组(40.8% vs. -13.2%),A组低于B组(40.8% vs. 48.2%)。断奶7天,A组瘤胃腹囊固有膜宽显著高于C组(P < 0.05);A组、B组平均固有膜宽明显大于C组(397.3 μm vs. 237.0 μm;294.7 μm vs. 269.2 μm);断奶14天,固有膜宽较断奶日的增长率B组明显高于C组(7.4% vs. -22.1%),A组与B组接近(11.3% vs. 7.4%)。A组、B组平均瘤胃腹囊黏膜下层厚明显大于C组(267.1 μm vs. 203.2 μm;294.4 μm vs. 244.7 μm);断奶14天,A组黏膜下层厚较断奶日的降低率明显低于C组(-9.6% vs. -26.6%),B组的增长率明显高于C组(116.8% vs. 55.5%),A组明显低于B组(-9.6% vs. 116.8%)。断奶7天,B组瘤胃腹囊肌层厚显著低于C组(P < 0.05);A组平均肌层厚明显小于C组(1 056.3 μm vs. 1 236.4 μm),B组与C组接近(1 305.7 μm vs. 1 302.8 μm);断奶14天,肌层厚较断奶日的增长率A组、B组均明显高于C组(44.8% vs. -20.8%;60.9% vs. 25.7%),A组小于B组(44.8% vs. 60.9%)。表明,早期断奶对羔羊瘤胃腹囊各组织学指标的发育均有不同程度的促进作用;28日龄断奶对瘤胃腹囊乳头高度发育的促进作用大于42日龄断奶,42日龄断奶对瘤胃腹囊角化层厚、黏膜下层厚和肌层厚发育的促进作用大于28日龄,两断奶日龄对瘤胃腹囊乳头宽度和瘤胃腹囊固有膜宽发育的促进作用相近。

表 3 早期断奶舍饲羔羊瘤胃腹囊组织形态学的变化 Table 3 Changes of morphology of the ventral sac in rumen for early weaned housed lambs
2.1.2 早期断奶舍饲羔羊瘤胃背囊组织形态学变化

表 4可见,断奶14天,A组、B组瘤胃背囊乳头高度显著高于C组(P < 0.05);断奶14天,乳头高度较断奶日的增长率A组明显高于B组(83.4% vs. 46.9%)。A组、B组羔羊平均瘤胃背囊乳头宽度大于C组(492.5 μm vs. 400.1 μm;474.9 μm vs. 465.4 μm);断奶14天,乳头宽度较断奶日的增长率A组明显低于C组(8.3% vs. 24.1%),B组明显高于C组(23.0% vs. -7.4%),A组低于B组(8.3% vs. 23.0%)。A组、B组羔羊平均瘤胃背囊角化层厚大于C组(123.4 μm vs. 115.9 μm;128.9 μm vs. 116.0 μm);断奶14天,角化层厚较断奶日的增长率A组明显高于C组(47.3% vs. 26.6%),B组的降低率明显低于C组(-18.0% vs. -31.8%),A组明显高于B组(47.3% vs. -18.0%)。A组平均瘤胃背囊固有膜宽明显大于C组(393.5 μm vs. 235.7 μm),B组与C组接近(274.6 μm vs. 277.3 μm);断奶14天,固有膜宽较断奶日的增长率A组明显低于C组(-14.0% vs. 38.4%),B组明显高于C组(41.1% vs. 12.1%),A组明显低于B组(-14.0% vs. 41.1%)。A组、B组平均瘤胃背囊黏膜下层厚均明显小于C组(230.6 μm vs. 292.3 μm;208.3 μm vs. 241.8 μm);断奶14天,A组黏膜下层厚较断奶日的降低率A组与C组接近(-22.9% vs. -27.4%), B组的增长率高于C组(7.7% vs. -0.3%), A组明显低于B组(-22.9% vs. 7.7%)。A组、B组平均瘤胃背囊肌层厚明显小于C组(1 335.0 μm vs. 1 434.4 μm;1 268.4 μm vs. 1 375.0 μm);断奶14天,肌层厚较断奶日的增长率A组与C组接近(3.2% vs. 0.2%),B组明显高于C组(35.9% vs. 7.5%),A组明显低于B组(3.2% vs. 35.9%)。表明,早期断奶对羔羊瘤胃背囊乳头高度、乳头宽度和角化层厚的发育均具有促进作用,28日龄断奶对乳头高度和角化层厚的促进作用大于42日龄,42日龄断奶对乳头宽度发育的促进作用大于28日龄断奶;早期断奶对羔羊瘤胃背囊黏膜下层厚和肌层厚的发育有抑制作用,28日龄断奶的抑制作用均大于42日龄断奶;28日龄断奶对羔羊瘤胃背囊固有膜宽的发育有促进作用,42日龄断奶似对瘤胃背囊固有膜宽的发育没有影响。

表 4 早期断奶舍饲羔羊瘤胃背囊组织形态学的变化 Table 4 Changes of morphology of the dorsal sac in rumen for early weaned housed lambs

对比表 34可看出,断奶14天,28日龄断奶组瘤胃背囊的乳头宽度、固有膜宽、黏膜下层厚和肌层厚等较断奶日的增长率均小于瘤胃腹囊;42日龄断奶组瘤胃背囊的乳头宽度、角化层厚、黏膜下层厚和肌层厚等较断奶日的增长率均小于瘤胃腹囊。

2.2 早期断奶舍饲羔羊网胃底组织形态学变化

表 5可知,断奶7天,A组网胃胃底乳头高度显著高于C组(P < 0.05);A组、B组平均乳头高度明显大于C组(1 194.0 μm vs. 632.2 μm;953.1 μm vs. 661.3 μm);断奶14天,乳头高度较断奶日的增长率A组明显低于C组(-44.2% vs. 12.0%),B组与C组相近(-7.9% vs. -10.9%),A组明显小于B组(-44.2% vs. -7.9%)。断奶14天,B组网胃胃底乳头宽度显著高于C组(P < 0.05);A组、B组平均乳头宽度明显大于C组(356.2 μm vs. 284.9 μm;346.1 μm vs. 280.9 μm);断奶14天,乳头宽度较断奶日的增长率A组明显低于C组(-30.9% vs. 9.3%),A组小于B组(-30.9% vs. 11.4%)。A组、B组平均网胃胃底角化层厚大于C组(104.9 μm vs. 93.3 μm;110.3 μm vs. 102.3 μm);断奶14天,角化层厚较断奶日的增长率A组明显高于C组(5.6% vs. -7.0%),B组小于C组(3.5% vs. 9.9%), A组与B组接近(5.6% vs. 3.5%)。断奶7天,A组网胃胃底固有膜宽显著高于C组(P < 0.05);A组、B组平均固有膜宽明显大于C组(281.3 μm vs. 186.2 μm;243.3 μm vs. 182.9 μm);断奶14天,固有膜宽较断奶日的增长率A组明显高于C组(26.3% vs. 3.7%),B组与C组接近(-12.9% vs. -17.7%),A组明显高于B组(26.3% vs. -12.9%)。断奶7天,B组网胃胃底黏膜下层厚显著低于C组(P < 0.05);断奶14天,A组、B组黏膜下层厚显著高于C组(P < 0.05);A组平均黏膜下层厚大于C组(272.7 μm vs. 264.7 μm),B组与C组接近(228.3 μm vs. 220.7 μm);断奶14天,黏膜下层厚较断奶日的增长率A组明显高于B组(63.9% vs. 25.9%)。断奶14天B组网胃胃底肌层厚显著高于C组(P < 0.05);A组羔羊平均肌层厚明显小于C组(1 652.7 μm vs. 1 981.9 μm),B组明显大于C组(1 737.9 μm vs. 1 657.9 μm);肌层厚较断奶日的增长率A组明显低于C组和B组(-14.0% vs. 7.9%;-14.0% vs. 28.2%)。表明,早期断奶对羔羊网胃胃底乳头高度、乳头宽度、角化层厚、固有膜宽和黏膜下层厚的发育均有促进作用;42日龄断奶对乳头高度、乳头宽度发育的促进作用大于28日龄断奶,两断奶日龄对角化层厚发育的促进作用相近,28日龄断奶对固有膜宽和黏膜下层厚发育的促进作用大于42日龄;28日龄断奶对网胃胃底肌层厚的发育有抑制作用,42日龄断奶对网胃胃底肌层厚的发育有促进作用。

表 5 早期断奶舍饲羔羊网胃底组织形态学的变化 Table 5 Changes of morphology of fundus reticuli for early weaned housed lambs
2.3 早期断奶舍饲羔羊瓣胃组织形态学变化

表 6显示,A组、B组平均瓣胃角化层厚明显大于C组(104.7 μm vs. 87.0 μm;158.9 μm vs. 140.0 μm);断奶14天,角化层厚较断奶日的增长率A组明显高于C组(40.6% vs. -1.1%),B组明显低于C组(31.9% vs. 60.0%),A组高于B组(40.6% vs. 31.9%)。断奶7、14天,A组瓣胃中央肌层厚显著高于C组(P < 0.05);A组平均中央肌层厚明显大于C组(159.9 μm vs. 74.1 μm),B组低于C组(89.6 μm vs. 97.4 μm);断奶14天,中央肌层厚较断奶日的增长率B组明显低于C组(54.4% vs. 84.0%),A组高于B组(120.2% vs. 54.4%)。A组、B组瓣胃平均肌层厚明显大于C组(132.5 μm vs. 54.1 μm;149.5 μm vs. 125.3 μm);断奶14天,肌层厚较断奶日的增长率A组明显高于C组(54.1% vs. -6.5%),B组明显低于C组(2.0% vs. 30.4%),A组高于B组(54.1% vs. 2.0%)。表明,早期断奶对羔羊瓣胃角化层厚、中央肌层厚和肌层厚的发育有促进作用,28日龄断奶的促进作用大于42日龄。

表 6 早期断奶舍饲羔羊瓣胃组织形态学的变化 Table 6 Changes of morphology of omasum for early weaned housed lambs
2.4 早期断奶舍饲羔羊皱胃各腺区组织形态学变化 2.4.1 早期断奶舍饲羔羊皱胃贲门腺区组织形态学变化

表 7皱胃贲门腺区显微测量数据可见,断奶7天B组皱胃贲门腺区黏膜厚显著低于C组(P < 0.05),断奶14天B组显著高于C组(P < 0.05);平均黏膜厚,A组与C组接近(656.6 μm vs. 650.1 μm),B组明显低于C组(502.4 μm vs. 562.9 μm);断奶14天,黏膜厚较断奶日增长率A组明显低于C组(-32.3% vs. -4.8%),B组明显高于C组(25.1% vs. -59.2%),A组明显低于B组(-32.3% vs. 25.1%)。断奶7天A组皱胃贲门腺区黏膜下层厚显著高于C组(P < 0.05);平均黏膜下层厚,A组明显大于C组(425.8 μm vs. 328.3 μm),B组明显小于C组(324.3 μm vs. 352.0 μm);断奶14天,黏膜下层厚较断奶日的增长率A组明显低于C组(-28.7% vs. 36.3%),B组明显高于C组(43.5% vs. -22.5%), A组明显低于B组(-28.7% vs. 43.5%)。A组平均皱胃贲门腺区肌层厚明显小于C组(616.5 μm vs. 754.8 μm),B组明显大于C组(791.4 μm vs. 748.7 μm);断奶14天,肌层厚较断奶日的增长率A组高于C组(11.0% vs. -3.4%),B组低于C组(5.2% vs. 16.5%),A组高于B组(11.0% vs. 5.2%)。表明,不同日龄断奶对羔羊皱胃贲门腺区不同部位的影响不同,28日龄断奶对皱胃贲门腺区黏膜厚的发育没有显著影响,对黏膜下层厚的发育有促进作用,对肌层厚的发育有抑制作用;42日龄断奶对皱胃贲门腺区黏膜厚和黏膜下层厚的发育有抑制作用,对肌层厚的发育有促进作用。

表 7 早期断奶舍饲羔羊皱胃贲门腺区组织形态学的变化 Table 7 Changes of morphology of cardiac gland in abomasum for early weaned housed lambs
2.4.2 早期断奶舍饲羔羊皱胃胃底腺区组织形态学变化

表 8可见,断奶14天B组皱胃胃底腺区黏膜厚显著高于C组(P < 0.05);A组、B组平均黏膜厚明显高于C组(605.0 μm vs. 525.1 μm;554.0 μm vs. 461.3 μm);断奶14天,黏膜厚较断奶日增长率A组明显低于C组(-29.2% vs. 7.9%),B组明显高于C组(15.7% vs. -33.0%),A组明显低于B组(-29.2% vs. 15.7%)。断奶7天A组皱胃胃底腺区黏膜下层厚显著低于C组(P < 0.05);A组、B组羔羊平均黏膜下层厚明显高于C组(326.8 μm vs. 245.2 μm;303.4 μm vs. 172.7 μm);断奶14天,黏膜下层厚较断奶日增长率A组、B组明显低于C组(-40.0% vs. -21.2%;-62.1% vs. -18.1%),A组降低率明显低于B组(-40.0% vs. -62.1%)。A组平均皱胃胃底腺区肌层厚明显低于C组(565.2 μm vs. 623.0 μm),B组高于C组(542.7 μm vs. 449.7 μm);断奶14天,肌层厚较断奶日增长率A明显高于C组(21.8% vs. -31.5%),B组明显低于C组(-33.0% vs. 25.9%), A组明显高于B组(21.8% vs. -33.0%)。表明,早期断奶对羔羊皱胃胃底腺区黏膜厚和黏膜下层厚的发育有促进作用,42日龄断奶对黏膜厚的促进作用更大,28日龄断奶对黏膜下层厚的促进作用更大;28日龄断奶对羔羊皱胃胃底腺区肌层厚发育有抑制作用,42日龄断奶对其有促进作用。

表 8 早期断奶舍饲羔羊皱胃胃底腺区组织形态学的变化 Table 8 Changes of morphology of fundus gland in abomasum for early weaned housed lambs
2.4.3 早期断奶舍饲羔羊皱胃幽门腺区组织形态学变化

表 9可见,A组平均皱胃幽门腺区黏膜厚明显高于C组(853.3 μm vs. 663.7 μm),B组明显低于C组(756.8 μm vs. 809.6 μm);断奶14天,黏膜厚较断奶日增长率A组明显低于C组(-13.0% vs. 53.7%), B组高于C组(16.9% vs. 3.3%), A组明显低于B组(-13.0% vs. 16.9%)。断奶7天B组皱胃幽门腺区黏膜下层厚显著高于C组(P < 0.05);A组、B组平均黏膜下层厚明显高于C组(614.4 μm vs. 385.4 μm;786.7 μm vs. 572.6 μm);断奶14天,黏膜下层厚较断奶日的增长率A组、B组明显小于C组(-59.3% vs. 17.7%;40.9% vs. 143.4%),A组明显低于B组(-59.3% vs. 40.9%)。断奶7天A组皱胃幽门腺区肌层厚显著低于C组(P < 0.05),B组显著高于C组(P < 0.05);A组、B组平均肌层厚明显高于C组(1 218.4 μm vs. 1 047.4 μm;1 466.3 μm vs. 1 253.7 μm);断奶14天,肌层厚较断奶日增长率A组、B组明显低于C组(-20.0% vs. 10.6%;-0.1% vs. 81.4%),A组明显低于B组(-20.0% vs. -0.1%)。表明,早期断奶对皱胃幽门腺区黏膜下层厚和肌层厚的发育有促进作用,42日龄断奶的促进作用大于28日龄断奶;28日龄断奶对羔羊皱胃幽门腺区黏膜厚的发育有促进作用,42日龄断奶对其有抑制作用。

表 9 早期断奶舍饲羔羊皱胃幽门腺区组织形态学的变化 Table 9 Changes of morphology of pyloric gland in abomasum for early weaned housed lambs
3 讨论

胃是贮存食物、分泌胃液、进行初步化学消化和推送食物进入十二指肠的器官,其发育受日龄、断奶日龄、饲料类型、营养水平等多重因素影响。综合以上数据可以发现,断奶对羔羊瘤胃、网胃、瓣胃和皱胃组织形态学指标的发育主要呈现促进作用,28日龄断奶对羔羊复胃组织形态学发育的促进作用优于42日龄断奶。这一结果是本试验所采用的补饲策略与适宜的精料补充料、优质苜蓿综合作用的效果。与韩正康等[11]报道的随着日龄的增长,反刍动物对植物性日粮的采食量逐渐增加,网胃、瘤胃和瓣胃的容积迅速加大的结论基本一致。本试验从7日龄开始给羔羊补饲精料补充料和优质苜蓿,且将精料补充料和苜蓿置于不同的补饲槽中,由羔羊根据自身需要自由选择,自由采食。这一策略不仅为羔羊提供了较为充足的适应时间,使羔羊较早地面对断奶后的饲粮环境,而且通过羔羊按需采食满足了其正常生长发育所需的营养物质,减缓了因断奶而造成的胃肠道组织形态学应激,保障了羔羊复胃的发育。28日龄断奶综合效果优于42日龄,应与日龄较大羔羊对母乳依赖性心理因素较强有关。从试验现场观察可见,42日龄断奶羔羊对母乳的依赖性更强,致使其在断奶后鸣叫和拒绝采食的情况多见,相对较少的精料补充料和优质苜蓿的采食,在一定时间内抑制了其复胃相关部位的发育,随着时间的推移,断奶应激的减缓,羔羊采食量逐渐恢复。由于试验条件所限,本试验无法对试验羔羊的采食量进行精确的监测,需在后续研究中补充这一内容并对其进行精确评价。

3.1 早期断奶对舍饲羔羊瘤胃组织形态学变化的影响

瘤胃上皮组织可依据不同生理状态及外部环境变化发生相应形态学变化以满足机体正常生理代谢的需要;瘤胃乳头的存在大大增加了瘤胃上皮与内容物的接触面积,有利于瘤胃上皮对养分的吸收和离子转运[26-27];瘤胃乳头的长度、宽度和瘤胃壁的厚度是评价瘤胃发育的重要指标[28]。刺激瘤胃乳头发育的主要原因是有机酸的存在,尤其是VFA,其刺激强度顺序为丁酸>丙酸>乙酸,这一顺序与VFA被瘤胃壁组织的代谢程度相一致[11]。研究表明,饲喂磨碎饲料的犊牛瘤胃乳头较短、表面积较小[29],提高精料饲料饲喂量可增加瘤胃上皮乳头的长度[30],即断奶及因断奶而引起的饲粮类型转变及数量的变化、代谢产物改变等因素对反刍动物瘤胃上皮的发育有重要影响。本试验结果显示,断奶对瘤胃腹囊与背囊相关部位均有不同程度的促进作用。与R. Zitnan等[6]研究中,早期断奶可使犊牛瘤胃乳头的表面积大于常规饲养犊牛的结论类似;本试验显示的瘤胃腹囊和背囊各部位组织形态学指标明显高于王彩莲[31]完全放牧不补饲条件下的测定数据,表明本试验舍饲并提早至7日龄补饲精料补充料与优质干草的措施,缩短了羔羊对饲草料的适应时间。羔羊瘤胃功能在28日龄已基本发育完善,可有效地发酵固体饲料,并产生较高浓度的挥发性脂肪酸,提供瘤胃上皮发育所需要的能源,促进瘤胃腹囊和背囊组织形态学的发育,且能较好地调节瘤胃内环境趋于稳恒[32];与28日龄相比,42日龄时羔羊食入母乳已减少,固体饲料增多。试验结果显示,此时断奶对瘤胃乳头发育的促进作用较小,其角化层厚、黏膜下层厚与肌层厚的增长加快主要由于日龄增大,断奶似对其未起主要作用。本试验结果也与R. G. Warner[33]、M. A. Lane[34]、T. Sakata[35]、H. N. Harrison[36]、汪晓娟[37]和刘婷[38-39]等的研究结果:饲喂固体饲料、给瘤胃灌注挥发性脂肪酸、饲喂高能饲料等因素均可刺激幼龄反刍动物瘤胃上皮形态发育的报道一致。

3.2 早期断奶对舍饲羔羊网胃、瓣胃组织形态学变化的影响

网胃是网-瘤胃运动的启动者或起步点,通过网-瘤胃有规律的收缩运动促使瘤胃内食糜混合并推动瘤胃内容物向瘤胃后推送;瓣胃的功能在于接纳网胃来的食糜并向皱胃转移,同时将粗糙的食糜滞留于叶片之间,进行磨压加工[40],以便为后消化道提供易于消化、吸收的食糜。本试验显示,早期断奶对羔羊网胃胃底组织学指标的发育主要起促进作用,42日龄断奶对乳头高度、乳头宽度发育的促进作用大于28日龄断奶,两个断奶日龄对角化层厚发育的促进作用相近,28日龄断奶对固有膜宽和黏膜下层厚发育的促进作用大于42日龄。应与断奶后对精料补饲料和苜蓿的采食量和比例有关,但有关早期断奶对羔羊网胃、瓣胃组织形态学指标影响的系统研究较少,需要进一步的研究确认。

3.3 早期断奶对舍饲羔羊皱胃组织形态学变化的影响

皱胃是反刍动物唯一具有分泌功能的胃[41]。刚出生时,皱胃是反刍动物胃中最大的胃室。随着日龄的增长,反刍动物对植物性饲粮采食量逐渐增加,网胃、瘤胃和瓣胃的容积迅速加大[40]。本试验中,断奶对羔羊皱胃部分腺区的相关组织学指标的发育虽有短暂的抑制,但整体上呈现出促进皱胃各腺区组织形态学发育的效果,与42日龄断奶相比,28日龄断奶影响更大,恢复所需时间较长,是羔羊饲粮中突然失去母乳,加之断奶引起的不可避免的固体饲粮采食量减少等因素造成的皱胃组织营养物质供应减少的结果;之后皱胃各组织形态指标开始恢复,是羔羊适应断奶后饲草料环境,皱胃的营养物质供应逐渐增加的结果。28日龄断奶羔羊在皱胃黏膜厚、黏膜下层厚随日龄增加出现降低,可能是羔羊个体差异造成的,拟或其它因素造成的,但因缺乏相关的文献报道,无法对其原因进行深入的探究,需要进一步的研究确认。

4 结论

在舍饲并于7日龄补饲条件下,早期断奶对羔羊瘤胃、网胃、瓣胃和皱胃组织形态学指标的发育主要呈现促进作用,28日龄断奶对羔羊复胃组织形态学发育的促进作用优于42日龄断奶。

参考文献
[1] LESMEISTER K E, TOZER P R, HEINRICHS A J. Development and analysis of a rumen tissue sampling procedure[J]. J Dairy Sci, 2004, 87(5): 1336–1344. DOI: 10.3168/jds.S0022-0302(04)73283-X
[2] 姜丹, 吴树清, 杜山, 等. 不同品种肉用绵羊舍饲条件下前胃组织学变化[J]. 中国草食动物, 2010, 30(3): 23–26.
JIANG D, WU S Q, DU S, et al. Histological changes of proventriculus in different meat-producing sheep under confinedness[J]. China Herbivores, 2010, 30(3): 23–26. (in Chinese)
[3] ŽITNAN R, BOMBA A, SOMMER A, et al. Development of rumen metabolism and ruminal epithelium in lambs[J]. Arch Tierernahr, 1993, 44(3): 227–233. DOI: 10.1080/17450399309386072
[4] 姜丹. 舍饲羊前胃组织形态学变化的研究[D]. 呼和浩特: 内蒙古农业大学, 2010.
JIANG D. Studies on morphologic changes of sheep's proventriculus in the condition of house feeding[D]. Huhhot: Inner Mongolia Agricultural University, 2010. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10129-2010150422.htm
[5] 高魁, 姜丹, 赵玮, 等. 舍饲不同生长阶段山羊小肠组织学观察[J]. 中国草食动物, 2010, 30(2): 21–24.
GAO K, JIANG D, ZHAO W, et al. Obserbation on the small intestine histology of goat in shed in different stages[J]. China Herbivores, 2010, 30(2): 21–24. (in Chinese)
[6] ZITNAN R, VOIGT J, WENNER J. Morphological and functional development of the rumen in the calf:influence of the time of weaning:1.morphological development of rumen mucosa[J]. Arch Tierernahr, 1999, 52(4): 351–362. DOI: 10.1080/17450399909386173
[7] 宋代军, 张家骅, 杨游, 等. 羔羊不同断奶日龄对小肠黏膜形态的影响[J]. 动物营养学报, 2007, 19(4): 344–349.
SONG D J, ZHANG J H, YANG Y, et al. Effect of weaning age on mucosal morphology in small intestine of goat KIDS[J]. Chinese Journal of Animal Nutrition, 2007, 19(4): 344–349. (in Chinese)
[8] 顾宪红, 张宏福, 佘锐萍, 等. 断奶日龄对消化器官形态及小肠组织化学的影响[J]. 家畜生态, 2003, 24(1): 24–30.
GU X H, ZHANG H F, SHE R P, et al. Chemical effect of weaning age on form of peptics and small intestine organs[J]. Ecology of Domestic Animal, 2003, 24(1): 24–30. (in Chinese)
[9] 张振斌, 蒋宗勇, 林映才, 等. 断奶日龄对仔猪小肠黏膜结构的影响[J]. 饲料博览, 2003(8): 3–5.
ZHANG Z B, JIANG Z Y, LIN Y C, et al. Effects of different weaning age on small intestine mucosal structure in piglets[J]. Feed Review, 2003(8): 3–5. (in Chinese)
[10] SUÁREZ B J, VAN REENEN C G, STOCKHOFE N, 等. 粗饲料来源和精粗比对小乳牛生长性能和瘤胃发育的影响[J]. 都文, 译. 饲料与畜牧, 2008(6): 67.
SUÁREZ B J, VAN REENEN C G, STOCKHOFE N, et al. Effect of roughage source and roughage to concentrate ratio on animal performance and rumen development in veal calves[J]. DU W, trans. Feed and Husbandry, 2008(6): 67. (in Chinese) http://www.cqvip.com/Main/Detail.aspx?id=27612984
[11] 韩正康, 陈杰. 反刍动物瘤胃的消化和代谢[M]. 北京: 科学出版社, 1988.
HAN Z K, CHEN J. Digestion and metabolism of rumen in ruminants[M]. Beijing: Science Press, 1988. (in Chinese)
[12] 王彩莲, 郝正里, 李发弟, 等. 放牧条件下甘肃高山细毛羊公羔胃的组织形态学变化[J]. 甘肃农业大学学报, 2009, 44(3): 10–15.
WANG C L, HAO Z L, LI F D, et al. Histomorphometric changes of stomach in grazing Gansu alpine fine-wool sheep at 0-56 day of age[J]. Journal of Gansu Agricultural University, 2009, 44(3): 10–15. (in Chinese)
[13] 张庆丽, 谭支良, 贺志雄, 等. 营养限制对断奶羔羊血浆和胃肠道上皮组织抗氧化能力的影响[J]. 动物营养学报, 2010, 22(5): 1320–1327.
ZHANG Q L, TAN Z L, HE Z X, et al. Effects of nutrient restriction on the antioxidant capacity of plasma and gut epithelial tissues in weanling lambs[J]. Chinese Journal of Animal Nutrition, 2010, 22(5): 1320–1327. (in Chinese)
[14] 顾宪红. 断奶仔猪日粮蛋白质需要量及低蛋白日粮对仔猪的影响[J]. 中国农业科技导报, 2001, 3(1): 34–47.
GU X H. Dietary protein requirement and its effect on weaning pigs[J]. Review of China Agricultural Science and Technology, 2001, 3(1): 34–47. (in Chinese)
[15] ŽITNAN R, VOIGT J, SCHÖNHUSEN U, et al. Influence of dietary concentrate to forage ratio on the development of rumen mucosa in calves[J]. Arch Tierernahr, 1998, 51(4): 279–291. DOI: 10.1080/17450399809381926
[16] 赵恒波, 罗海玲, 朱虹, 等. 纤维素复合酶对羔羊消化道组织结构的影响[J]. 畜牧兽医学报, 2007, 38(10): 1054–1059.
ZHAO H B, LUO H L, ZHU H, et al. Effect of fibrolytic enzymes on gastrointestinal morphological structure in kids[J]. Acta Veterinaria et Zootechnica Sinica, 2007, 38(10): 1054–1059. DOI: 10.3321/j.issn:0366-6964.2007.10.008 (in Chinese)
[17] 包花尔. 不同饲养条件下阿尔巴斯绒山羊前胃形态学改变的研究[D]. 呼和浩特: 内蒙古农业大学, 2004.
BAO H E. Study of different raising conditions on variety of the morphological of Aerbasi cashmere's proventriculus[D]. Huhhot: Inner Mongolia Agricultural University, 2004. (in Chinese) http://cdmd.cnki.com.cn/article/cdmd-10129-2004076719.htm
[18] 张海涛. 纳豆枯草芽孢杆菌对犊牛生长发育以及瘤胃组织形态学发育的影响[D]. 北京: 中国农业科学院, 2009.
ZHANG H T. Influence of Bacillus subitilis natto on animal performance and histology, morphological features of ruminal papillae in dairy calves[D]. Beijing: Chinese Academy of Agricultural Sciences, 2009. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-82101-2009152316.htm
[19] 张军民, 高振川. 谷氨酰胺对早期断奶仔猪肠粘膜蛋白质、DNA含量和组织形态的影响[J]. 中国农业科学, 2002, 35(10): 1264–1268.
ZHANG J M, GAO Z C. Effect of glutamine supplementation on intestinal mucosal protein, DNA and mucosal morphology of early-weaned piglets[J]. Scientia Agricultura Sinica, 2002, 35(10): 1264–1268. DOI: 10.3321/j.issn:0578-1752.2002.10.018 (in Chinese)
[20] 刘涛, 彭健, 周诗其, 等. 外源性谷氨酰胺和谷氨酸对早期断奶仔猪肠粘膜形态、结构和小肠吸收功能及骨骼肌中DNA、RNA浓度的影响[J]. 中国兽医学报, 2003, 23(1): 62–65.
LIU T, PENG J, ZHOU S Q, et al. Effects of glutamine and glutamate on small intestinal structure, active absorption and DNA, RNA concentrations in muscle tissue of early weaned piglets[J]. Chinese Journal of Veterinary Science, 2003, 23(1): 62–65. (in Chinese)
[21] 胡泉舟, 侯永清, 丁斌鹰, 等. α-酮戊二酸对仔猪小肠组织学形态与功能的影响[J]. 动物营养学报, 2008, 20(6): 662–667.
HU Q Z, HOU Y Q, DING B Y, et al. Effects of α-ketoglutarate on histological morphology and function of small intestine in piglets[J]. Chinese Journal of Animal Nutrition, 2008, 20(6): 662–667. (in Chinese)
[22] 范志影, 刁其玉, 蔡健森. 不同蛋白质来源代乳粉对羔羊肌肉化学成分的影响[J]. 中国畜牧杂志, 2008, 44(7): 29–30, 48.
FAN Z Y, DIAO Q Y, CAI J S. Effect of different protein sources of milk replacer on the chemical composition in muscle for lambs[J]. Chinese Journal of Animal Science, 2008, 44(7): 29–30, 48. (in Chinese)
[23] 郭江鹏. 不同营养水平全颗粒饲粮对早期断奶羔羊的育肥效果[D]. 兰州: 甘肃农业大学, 2005.
GUO J P. Effects of complete pellet diets with different nutrition level on fattening of early weaning lambs[D]. Lanzhou: Gansu Agricultural University, 2005. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10733-2005103864.htm
[24] 马仲华. 家畜解剖学及组织胚胎学[M]. 3版. 北京: 中国农业出版社, 2002.
MA Z H. The Anatomy and histoembryology of the domestic animals[M]. 3rd ed. Beijing: China Agricultural Press, 2002. (in Chinese)
[25] 刘世新. 实用生物组织学技术[M]. 北京: 科学出版社, 2004.
LIU S X. Practical Biological histological techniques[M]. Beijing: Science Press, 2004. (in Chinese)
[26] BALDWIN VI R L. Use of isolated ruminal epithelial cells in the study of rumen metabolism[J]. J Nutr, 1998, 128(2): 2935–2965.
[27] BALDWIN VI R L, JESSE B W. Technical note:isolation and characterization of sheep ruminal epithelial cells[J]. J Anim Sci, 1991, 69(9): 3603–3609. DOI: 10.2527/1991.6993603x
[28] LESMEISTER K E, HEINRICHS A J, GABLER M T. Effects of supplemental yeast (Saccharomyces cerevisiae) culture on rumen development, growth characteristics, and blood parameters in neonatal dairy calves[J]. J Dairy Sci, 2004, 87(6): 1832–1839. DOI: 10.3168/jds.S0022-0302(04)73340-8
[29] BEHARKA A A, NAGARAJA T G, MORRILL J L, et al. Effects of form of the diet on anatomical, microbial, and fermentative development of the rumen of neonatal calves[J]. J Dairy Sci, 1998, 81(7): 1946–1955. DOI: 10.3168/jds.S0022-0302(98)75768-6
[30] STOBO I J F, ROY J H B, GASTON H J. Rumen development in the calf:1.The effect of diets containing different proportions of concentrates to hay on rumen development[J]. Br J Nutr, 1966, 20(2): 171–188. DOI: 10.1079/BJN19660021
[31] 王彩莲. 0~56日龄放牧绵羊消化系统发育变化的研究[D]. 兰州: 甘肃农业大学, 2009.
WANG C L. Developmental of changes of digestive system in grazing sheep from birth to 56 d[D]. Lanzhou: Gansu Agricultural University, 2009. (in Chinese)
[32] 郭江鹏, 张元兴, 李发弟, 等. 0~56日龄舍饲肉用羔羊胃肠道发育特点研究[J]. 畜牧兽医学报, 2011, 42(4): 513–520.
GUO J P, ZHANG Y X, LI F D, et al. Developmental characteristics of gastrointestinal tract in confined lambs at the age of 0-56 days[J]. Acta Veterinaria et Zootechnica Sinica, 2011, 42(4): 513–520. (in Chinese)
[33] WARNER R G, FLATT W P, LOOSLI J K. Ruminant nutrition, dietary factors influencing development of ruminant stomach[J]. J Agric Food Chem, 1956, 4(9): 788–792. DOI: 10.1021/jf60067a003
[34] LANE M A, JESSE B W. Effect of volatile fatty acid infusion on development of the rumen epithelium in neonatal sheep[J]. J Dairy Sci, 1987, 80(4): 740–746.
[35] SAKATA T, TAMATE H. Rumen epithelium cell proliferation accelerated by propionate and acetate[J]. J Dairy Sci, 1979, 62(1): 49–52. DOI: 10.3168/jds.S0022-0302(79)83200-2
[36] HARRISON H N, WARNER R G, SANDER E G, et al. Changes in the tissue and volume of the stomachs of calves following the removal of dry feed or consumption of inert bulk[J]. J Dairy Sci, 1960, 43(9): 1301–1312. DOI: 10.3168/jds.S0022-0302(60)90317-9
[37] 汪晓娟, 刘婷, 李发弟, 等. 开食料补饲日龄对羔羊瘤胃和小肠组织形态的影响[J]. 草业学报, 2016, 25(4): 172–178.
WANG X J, LIU T, LI F D, et al. Effect of starter supply age on the morphology of the rumen and small intestine in lamb[J]. Acta Prataculturae Sinica, 2016, 25(4): 172–178. DOI: 10.11686/cyxb2015187 (in Chinese)
[38] 刘婷, 李发弟, 李冲, 等. 断奶时间对不同日龄湖羊羔羊瘤胃形态及表皮生长相关基因表达的影响[J]. 动物营养学报, 2016, 28(5): 1384–1393.
LIU T, LI F D, LI C, et al. Effects of weaner time on rumen morphology and gene expressions involved in rumen epidermis growth of Hu Lambs at different days of age[J]. Chinese Journal of Animal Nutrition, 2016, 28(5): 1384–1393. (in Chinese)
[39] 刘婷, 李发弟, 王维民, 等. 不同日龄补饲开食料对湖羊羔羊瘤胃形态及表皮生长相关基因表达的影响[J]. 畜牧兽医学报, 2016, 47(12): 2441–2449.
LIU T, LI F D, WANG W M, et al. Effects of starter feeding on rumen papilla genes expression involved in cellular growth and morphology in Hu Lamb at different ages[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(12): 2441–2449. (in Chinese)
[40] 刘敏雄. 反刍动物消化生理学[M]. 北京: 北京农业大学出版社, 1991.
LIU M X. Digest physiology of ruminant animals[M]. Beijing: Beijing Agricultural University Press, 1991. (in Chinese)
[41] 陈杰. 家畜生理学[M]. 4版. 北京: 中国农业出版社, 2003.
CHEN J. Physiology of domestic animals[M]. 4th ed. Beijing: China Agricultural Press, 2003. (in Chinese)