畜牧兽医学报  2018, Vol. 49 Issue (4): 811-817. DOI: 10.11843/j.issn.0366-6964.2018.04.019    PDF    
重组鸡GSTA3蛋白对福美双诱导胫骨软骨发育不良肉鸡红细胞免疫相关基因转录的影响
贾发杰1, 牛胜1, 张宁1, 李欣1, 宁官保1, 张鼎1, 李宏全1, 马海利1, 郝卫芳2, 高文伟1, 赵宇军1, 高诗敏1, 李桂兰1, 李建慧1, 闫芳1, 高荣琨1, 田文霞1     
1. 山西农业大学动物科技学院, 太谷 030801;
2. 太原市动物疫病预防控制中心, 太原 030024
摘要:为研究胫骨软骨发育不良(TD)肉鸡红细胞免疫相关基因转录水平的变化及重组鸡谷胱甘肽S-转移酶A3(chGSTA3)蛋白对TD肉鸡红细胞免疫相关基因转录的影响,将120只肉雏鸡饲喂一周后,随机分为基础日粮组(A、B、C组)和福美双处理组(D、E、F组),对福美双处理组肉鸡通过饲料中添加100 mg·kg-1福美双诱发建立肉鸡TD模型,通过腿部肌肉注射法,对B组和E组肉雏鸡注射有活性的低剂量(20 μg·kg-1)重组GSTA3蛋白,对C组和F组肉雏鸡注射高剂量(50 μg·kg-1)重组GSTA3蛋白,对A和D组的肉雏鸡注射等体积的磷酸盐缓冲液(PBS);使用Real-time PCR对肉鸡红细胞中免疫基因的信使RNA(mRNA)转录水平进行检测。结果显示,Toll样受体(TLR)2、TLR3、TLR4、TLR5、TLR7、TLR15、髓样分化因子88(MyD88)、主要组织相容性复合体(MHC)Ⅱ、核苷酸结合寡聚化结构域样受体家族中的C5型受体(NLRC5)、肿瘤坏死因子受体相关因子6(TRAF6)、白细胞介素-7(IL-7)基因可以在鸡红细胞转录;福美双处理组D与磷酸缓冲盐溶液(PBS)处理组A相对比,TLR2、TLR3、TLR4、TLR5、TLR7、TLR15、MyD88、TRAF6、MHCⅡ和NLRC5在试验的第4天显著升高,IL-7显著降低(P < 0.05),在试验的第15天TD肉鸡红细胞中TLR2、TLR4、MyD88和NLRC5显著下调(P < 0.05),IL-7、TLR3、TLR5、TLR7、TLR15、MHCⅡ、TRAF6变化不明显(P>0.05);E组和F组与D组相比,在试验第4天,除E组TLR4、TLR5和MyD88外,其余基因都有显著性变化(P < 0.05);在第15天,E组中TLR4、TLR5、MyD88和NLRC5,及F组中TLR3、TLR5、MyD88、TRAF6和IL-7变化不显著,其他基因都有显著性差异(P < 0.05)。鸡红细胞可能通过免疫相关基因TLR2、TLR3、TLR4、TLR5、TLR7、TLR15、IL-7、MyD88、TRAF6、MHCⅡ和NLRC5转录水平的变化,在早期诱导TD发生,后期减轻肉鸡TD症状;GSTA3能够对福美双诱导肉鸡TD的作用产生影响。
关键词福美双    胫骨软骨发育不良    红细胞    chGSTA3    TLRs    
The Effection of Recombinant Protein GSTA3 on the Transcription of Erythrocytes Immune Related Genes in Tibial Dyschondroplasia Broilers Induced by Thiram
JIA Fa-jie1, NIU Sheng1, ZHANG Ning1, LI Xin1, NING Guan-bao1, ZHANG Ding1, LI Hong-quan1, MA Hai-li1, HAO Wei-fang2, GAO Wen-wei1, ZHAO Yu-jun1, GAO Shi-min1, LI Gui-lan1, LI Jian-hui1, YAN Fang1, GAO Rong-kun1, TIAN Wen-xia1     
1. College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China;
2. Taiyuan Center for Disease Control and Prevention, Taiyuan 030024, China
Abstract: The objective of this study was to evaluate the transcriptional changes of immune related genes and the effection of recombinant chicken glutathione S-transferase A3 (chGSTA3) protein on the transcription of immune related genes in erythrocytes of Tibial Dyschondroplasia (TD) broiler chickens. Therefore, the model of TD broiler chickens was established, in which 120 broiler chickens were randomly broken up into 6 groups; group A, B and C (fed with basal diet), group D, E and F (fed with basal diet containing 100 mg·kg-1 Thiram) after one week normal feeding. The broiler chickens of group B and E were treated with chGSTA3 protein by intramuscular injection (low dose: 20 μg·kg-1) and the broilers of group C and F were treated intra-muscularly with chGSTA3 protein (high dose: 50 μg·kg-1), while groups A and D received the same dosage of phosphate buffered solution (PBS). We used Real-time PCR to investigate the mRNA expression of the immune-related genes in chicken erythrocytes. The transcripts for TLR2, TLR3, TLR4, TLR5, TLR7, TLR15, myeloid differentiation factor 88 (MyD88), major histocompatibility complex (MHC) class Ⅱ, Nucleotidebinding oligomerization domain receptor caspase recruitment domain 5 (NLRC5), TNF receptor-associated factor 6 (TRAF6) and Interleukin (IL-7) were constitutively expressed in erythrocytes of healthy broiler chickens. Contrasted with group A with phosphate buffered solution (PBS) treatment, the mRNA transcription level of TLR2, TLR3, TLR4, TLR5, TLR7, TLR15, MyD88, MHCⅡ, NLRC5, TRAF6 of Thiram-treated chicken erythrocytes in group D on the 4th day were significantly upregulated (P < 0.05), whereas IL-7 was significantly downregulated. We observed that the transcripts of immune-related genes: TLR2, TLR4, MyD88 and NLRC5 in the chicken erythrocytes of group D were significantly downregulated than that in group A (P < 0.05), but IL-7, TLR3, TLR5, TLR7, TLR15, MHCⅡ and TRAF6 were insignificant (P>0.05) on the 15th day. The changes of above mentioned genes mRNA expression in group E and F were significant except TLR4, TLR5, MyD88 in group E as compared with group D on the 4th day. The changes of TLR4, TLR5, MyD88, NLRC5 genes in group E and TLR3, TLR5, MyD88, TRAF6, IL-7 genes in group F were insignificant, whereas the others were significant compared with group D on the 15th day. Broiler chicken erythrocytes could induce the occurrence of TD in the early stage and alleviate TD symptoms in the late stage by changing the mRNA expression of IL-7, TLR2, TLR3, TLR4, TLR5, TLR7, TLR15, MyD88, MHCⅡ, NLRC5, TRAF6. The recombinant chicken glutathione S-transferase A3 protein could influence TD development caused by Thiram.
Key words: Thiram     TD     erythrocytes     chGSTA3     TLRs    

肉鸡TD是一种家禽胫骨近端生长板成骨受阻的疾病[1]。TD可导致肉鸡骨变形[2],该病严重危害了肉鸡养殖业,导致TD的因素很多,其致病机制还不清楚,也没有有效的预防措施。福美双是一类二硫代氨基甲酸酯相关化合物,不但被广泛的用作种子处理农用杀菌剂,而且在橡胶工业中被较小范围的用作促进剂[3]。鸡慢性接触二硫代氨基甲酸酯杀虫剂,例如福美双或戒酒硫,会增加TD发病率[4-5]。福美双能有效地诱发肉鸡TD,并且与自然发生的肉鸡TD在症状上十分相似[6]。谷胱甘肽S-转移酶(glutathione S-transferase, GSTs)是Ⅱ相抗氧化家族中的一类蛋白酶,且有解毒的作用[7]。相关研究表明,GSTA3在保护正常的小鼠抵抗黄曲霉毒素毒性中起重要作用[8]。患有TD的肉鸡生长板的很多软骨细胞发生凋亡[9-10]。受到刺激的TLRs能够通过引发促凋亡信号通路而诱导凋亡[11-13]。相关研究表明,鸡红细胞不但具有免疫功能而且可以表达TLR2、TLR3、TLR4、TLR5、TLR7[14]。田文霞(W.X.Tian)等利用微阵列芯片技术筛选出TD早期的肉鸡胫骨生长板软骨细胞内差异性表达的免疫相关基因[15]。先前人们主要从生长板血管的生成、生长板细胞的代谢、成熟和凋亡方面研究了TD的发生机制[16-18],但是红细胞免疫功能和chGSTA3蛋白解毒作用对TD发生的影响尚未见报道。为研究福美双诱导的TD肉鸡中红细胞免疫基因的转录变化和重组chGSTA3对TD肉鸡红细胞免疫基因mRNA水平的影响,我们对福美双处理组肉鸡饲喂100 mg·kg-1福美双建立TD模型,并在不同的时间利用chGSTA3对TD肉鸡进行腿部肌肉注射,使用Real-time PCR检测TLR2、TLR3、TLR4、TLR5、TLR7、TLR15、IL-7、MyD88、TRAF6、MHCⅡ和NLRC5转录水平的变化,以探明其在肉鸡TD中的作用以及chGSTA3在TD发生时对它们的影响,为更深入全面的了解TD的发病机制和预防TD的发生提供新的科学理论依据。

1 材料与方法 1.1 实验动物

1日龄120只健康艾维茵肉雏鸡购自山西省大象农牧集团有限公司。

1.2 实验试剂

福美双(Amresco);实验室自行制备的重组鸡GSTA3纯化蛋白[19];RNAiso plus(Trizol)(AA909-1);prime script TM RT Reagent Kit(AK3020);SYBR® Premix Ex Taq Ⅱ(TaKaRa大连宝生物工程有限公司);DEPC购于Amresco公司;6× DNA Loading Buffer,600 bp DNA ladder(中科瑞泰生物科技有限公司);50× TAE Buffer(北京博奥拓达科技有限公司);2 mL、1.5 mL离心管(Axygen)。

1.3 试验方法 1.3.1 动物处理

将饲喂一周后的120只肉雏鸡随机分为基础日粮组(A、B、C组)和饲喂福美双组(D、E、F组)。参考田文霞等[20-21]试验设计方案构建肉鸡TD模型;通过肌肉注射,在肉鸡第8、10、12、14日龄时,分别给B、E组肉鸡腿部注射浓度为20 μg·kg-1的重组chGSTA3蛋白;给C、F组肉鸡腿部注射50 μg·kg-1的重组chGSTA3蛋白;给A、D组肉鸡注射等体积的PBS,对试验鸡进行常规的饲养管理。在饲喂福美双后第4和15天,对各组鸡每只采集静脉抗凝血2 mL,用于后续试验。

1.3.2 鸡红细胞分离和红细胞RNA提取及质量检测

参照相关文献从上述血液样品中分离红细胞[14],使用本实验室改进的Trizol法提取红细胞总RNA,用核酸测定仪测定提取的RNA的浓度、A260/280、A260/230的值,并用1.5%琼脂糖凝胶电泳检测所提取的红细胞RNA的质量。对质量合格的RNA反转录,用于后续试验。

1.3.3 引物的设计与合成

根据NCBI收录的免疫相关的基因IL-7、TLR2、TLR3、TLR5、TLR7、TLR15、NLRC5的mRNA序列,使用Primer Premier 5.0软件设计其引物,参考相关文献[22-24]得到TLR4、MyD88、MHCⅡ、TRAF6基因的引物序列,利用18S rRNA作为内参基因。由上海捷瑞生物工程有限公司合成本试验所用引物(表 1)。

表 1 Real-time PCR扩增所使用的引物序列及GenBank登录号 Table 1 Primer sequences and GenBank accession numbers used in the Real-time PCR analysis
1.3.4 Real-time PCR检测肉鸡红细胞IL-7、TLR2、TLR3、TLR4、TLR5、TLR7、TLR15、MyD88、MHCⅡ、NLRC5和TRAF6基因

根据SYBR® Premix Ex TaqTM Ⅱ试剂盒说明书要求进行Real-time PCR反应,采用10 μL的反应体系,体系组成:0.25 μL的上游和下游引物(10 μmol·L-1),5.0 μL SYBR Premix Ex Taq Ⅱ(2×),0.1 μL ROX Refe-rence DyeⅡ(50×),1.0 μL RT反应液,3.4 μL单蒸水(dH2O);Real-time PCR条件:预变性反应1个循环,95 ℃ 3 min,PCR反应42个循环,95 ℃ 30 s,55 ℃ 30 s;熔解曲线分析1个循环,55 ℃ 30 s,95 ℃ 30 s。

1.3.5 数据分析

用2-△△Ct法计算免疫相关基因在鸡红细胞中的相对转录量,使用SPSS Statistics 17.0统计分析软件分析各组数据的差异显著性,P<0.05即为差异表达显著,P>0.05表达不显著;各组间显著差异标注不同英文小写字母。

2 结果 2.1 IL-7、TLR2、TLR3、TLR4、TLR5、TLR7、TLR15、MyD88、MHCⅡ、NLRC5和TRAF6在肉鸡红细胞中的转录

试验结果表明正常肉鸡红细胞能够在mRNA水平上表达IL-7、TLR2、TLR3、TLR4、TLR5、TLR7、TLR15、MyD88、MHCⅡ、NLRC5和TRAF6,其中TLR7表达量最高,其次是IL-7、TLR5、TLR4、TLR2、TLR3、TLR15、MyD88,而MHCⅡ、NLRC5、TRAF6表达量较低,见图 1

图 1 在正常肉鸡红细胞中TLR2、TLR3、TLR4、TLR5、TLR7、TLR15、MyD88、MHCⅡ、TRAF6、IL-7、NLRC5相对于内参基因18S的mRNA表达量 Figure 1 The mRNA expression level of TLR2, TLR3, TLR4, TLR5, TLR7, TLR15, MyD88, MHCⅡ, TRAF6, IL-7, NLRC5 in erythrocytes of healthy broiler chickens relative to reference gene 18S
2.2 TD肉鸡红细胞中免疫相关基因mRNA水平变化及chGSTA3对TD肉鸡红细胞中免疫相关基因转录的影响

通过Real-time PCR对TD肉鸡红细胞免疫相关基因的转录水平进行检测,发现在TD损伤期的第4天,D组与A组相比,鸡红细胞中的TLR2、TLR3、TLR4、TLR5、TLR7、TLR15、MyD88、MHCⅡ、NLRC5、TRAF6基因转录水平显著上调,IL-7显著降低(P < 0.05);在饲喂福美双后第15天,D组TD肉鸡红细胞中TLR2、TLR4、MyD88和NLRC5显著下调(P < 0.05),IL-7、TLR3、TLR5、TLR7、TLR15、MHCⅡ和TRAF6变化不显著(P>0.05)。chGSTA3处理的E组和F组与D组相比,在试验第4天,除了E组中的TLR4、TLR5、MyD88,其余基因都发生了显著变化(P < 0.05),在第15天E组中的TLR4、TLR5、MyD88、NLRC5及F组中的TLR3、TLR5、MyD88、TRAF6、IL-7变化不显著,其余基因都有显著差异(P < 0.05),见图 2

A. PBS组;B. 20 μg·kg-1 chGSTA3组;C. 50 μg·kg-1 chGSTA3组;D. 100 mg·kg-1福美双+PBS组;E. 100 mg·kg-1福美双和20 μg·kg-1 chGSTA3组;F. 100 mg·kg-1福美双+50 μg·kg-1 chGSTA3组;不同的小写字母(例如a、b、c、d、e、f)表示各组间差异显著(P < 0.05) A. PBS group; B. chGSTA3 20 μg·kg-1 group; C. chGSTA3 50 μg·kg-1 group; D. Thiram 100 mg·kg-1+PBS group; E. Thiram 100 mg·kg-1 + chGSTA3 20 μg·kg-1 group; F. Thiram 100 mg·kg-1 + chGSTA3 50 μg·kg-1 group; Different lower-case letters (such as a, b, c, d, e, f) indicate the significant difference between groups (P < 0.05) 图 2 TD肉鸡红细胞中免疫相关基因的转录变化及chGSTA3对其的影响 Figure 2 The transcription level of immune related genes in erythrocytes of TD affected-broiler chickens and the effection of recombinant chGSTA3 on the transcription
3 讨论

田文霞等研究发现,肉鸡TD的发生可能与福美双影响GSTs的解毒功能有关[25-26],同时利用cDNA芯片技术筛选出1 630个差异表达基因,经生物信息学分析,这些基因与免疫应答、抗凋亡和氧化应激等都有关[15]。本试验对肉鸡TD红细胞中免疫基因的转录水平进行检测,发现注射重组chGSTA3蛋白后,IL-7、TLR2、TLR3、TLR4、TLR5、TLR7、TLR15、MHCⅡ、MyD88、NLRC5、TRAF6有差异,表明chGSTA3在福美双诱导的肉鸡TD中发挥一定的作用,但其作用的分子机制有待进一步研究。研究表明,福美双能改变神经元样PC12细胞的钙稳态,从而使其凋亡[27];N. C. Rath等[16]和张宁等[17]通过TUNEL法检测技术发现TD肉鸡胫骨生长板内许多软骨细胞和血管内皮细胞发生凋亡,最终导致TD发生。

有研究发现,机体细胞中的TLR3基因被激活后,通过信号转导激活核因子κB(NF-κB),使有生物活性的细胞因子和化学介质被大量生成和释放,导致干扰素等蛋白的活化,进而使感染病毒的细胞发生凋亡[28],而卡介苗能通过活化TLR7而引起浅表膀胱癌细胞的凋亡[29];鸡红细胞也可能通过上调IFNs的表达,促进病毒感染的细胞凋亡[14]。本试验结果显示,在试验第4天,饲喂福美双D组TLR3和TLR7显著上调,可能使软骨细胞凋亡,而诱导TD发生[17]

研究表明,鞭毛蛋白诱导活化的TLR5也能导致足细胞凋亡[30],银纳米颗粒通过TLR2信号转导通路也会引起软骨细胞的凋亡[31],活化的TLR4-MyD88信号通路也参与了血管紧张素Ⅱ诱导的肾小球系膜细胞的凋亡过程[32]。本试验结果显示,在试验第4天D组TLR2、TLR4和TLR5与A组相比显著上调,可能通过一系列信号转导,激活caspases信号通路,最终导致软骨细胞凋亡。

白细胞介素7能通过使促凋亡蛋白Bad失活而促进T细胞的存活[33]。本研究显示,在饲喂福美双后第4天,IL-7基因显著下调,可能在TD发生中也有促进软骨细胞凋亡的作用。

在试验第15天,D组与对照组A相比,IL-7、MHCⅡ、TRAF6、TLR3、TLR5、TLR7、TLR15不显著,MyD88、NLRC5、TLR2、TLR4下调,这可能与减轻软骨损伤有关。

4 结论

鸡红细胞能转录IL-7、TLR2、TLR3、TLR4、TLR5、TLR7、TLR15、MHCⅡ、MyD88、NLRC5、TRAF6;鸡红细胞TLR2、TLR3、TLR4、TLR5、TLR7、TLR15、MHCⅡ、MyD88、NLRC5、TRAF6基因mRNA水平升高,IL-7降低后,可能通过一系列信号转导,促进软骨细胞凋亡,而在后期可减轻TD症状;chGSTA3可改变红细胞免疫相关基因的转录,这将为预防TD和深入研究其发病机制提供理论支持。

参考文献
[1] RASAPUTRA K S, LIYANAGE R, LAY J O Jr, et al. Tibial dyschondroplasia-associated proteomic changes in chicken growth plate cartilage[J]. Avian Dis, 2010, 54(4): 1166–1171. DOI: 10.1637/9384-050110-Reg.1
[2] LYNCH M, THORP B H, WHITEHEAD C C. Avian tibial dyschondroplasia as a cause of bone deformity[J]. Avian Pathol, 1992, 21(2): 275–285. DOI: 10.1080/03079459208418842
[3] CERESER C, BOGET S, PARVAZ P, et al. Thiram-induced cytotoxicity is accompanied by a rapid and drastic oxidation of reduced glutathione with consecutive lipid peroxidation and cell death[J]. Toxicology, 2001, 163(2-3): 153–162. DOI: 10.1016/S0300-483X(01)00401-2
[4] VARGAS M I, LAMAS J M, ALVARENGA V. Tibial dyschondroplasia in growing chickens experimentally intoxicated with tetramethylthiuram disulfide[J]. Poult Sci, 1983, 62(7): 1195–1200. DOI: 10.3382/ps.0621195
[5] EDWARDS H M Jr. Efficacy of several vitamin D compounds in the prevention of tibial dyschondroplasia in broiler chickens[J]. J Nutr, 1990, 120(9): 1054–1061. DOI: 10.1093/jn/120.9.1054
[6] RATH N C, HUFF W E, BALOG J M, et al. Comparative efficacy of different dithiocarbamates to induce tibial dyschondroplasia in poultry[J]. Poult Sci, 2004, 83(2): 266–274. DOI: 10.1093/ps/83.2.266
[7] SHEEHAN D, MEADE G, FOLEY V M, et al. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily[J]. Biochem J, 2001, 360(1): 1–16.
[8] ILIC Z, CRAWFORD D, EGNER P A, et al. Glutathione-S-transferase A3 knockout mice are sensitive to acute cytotoxic and genotoxic effects of aflatoxin B1[J]. Toxicol Appl Pharmacol, 2010, 242(3): 241–246. DOI: 10.1016/j.taap.2009.10.008
[9] RATH N C, BAYYARI G R, BALOG J M, et al. Physiological studies of turkey tibial dyschondroplasia[J]. Poult Sci, 1994, 73(3): 416–424. DOI: 10.3382/ps.0730416
[10] RATH N C, HUFF W E, BAYYARI G R, et al. Cell death in avian tibial dyschondroplasia[J]. Avian Dis, 1998, 42(1): 72–79. DOI: 10.2307/1592578
[11] LÓPEZ M, SLY L M, LUU Y, et al. The 19-kDa Mycobacterium tuberculosis protein induces macrophage apoptosis through Toll-like receptor-2[J]. J Immunol, 2003, 170(5): 2409–2416. DOI: 10.4049/jimmunol.170.5.2409
[12] ALIPRANTIS A O, YANG R B, WEISS D S, et al. The apoptotic signaling pathway activated by Toll-like receptor-2[J]. EMBO J, 2000, 19(13): 3325–3336. DOI: 10.1093/emboj/19.13.3325
[13] INTO T, KIURA K, YASUDA M, et al. Stimulation of human Toll-like receptor (TLR) 2 and TLR6 with membrane lipoproteins of Mycoplasma fermentans induces apoptotic cell death after NF-κB activation[J]. Cell Microbiol, 2004, 6(2): 187–199. DOI: 10.1046/j.1462-5822.2003.00356.x
[14] ST PAUL M, PAOLUCCI S, BARJESTEH N, et al. Chicken erythrocytes respond to Toll-like receptor ligands by up-regulating cytokine transcripts[J]. Res Vet Sci, 2013, 95(1): 87–91. DOI: 10.1016/j.rvsc.2013.01.024
[15] TIAN W X, LI J K, QIN P, et al. Screening of differentially expressed genes in the growth plate of broiler chickens with tibial dyschondroplasia by microarray analysis[J]. BMC Genomics, 2013, 14: 276. DOI: 10.1186/1471-2164-14-276
[16] RATH N C, RICHARDS M P, HUFF W E, et al. Changes in the tibial growth plates of chickens with thiram-induced dyschondroplasia[J]. J Comp Pathol, 2005, 133(1): 41–52. DOI: 10.1016/j.jcpa.2005.01.005
[17] 张宁, 李欣, 宁官保, 等. 福美双诱导的肉鸡胫骨软骨发育不良软骨细胞凋亡[J]. 畜牧兽医学报, 2017, 48(12): 2421–2428.
ZHANG N, LI X, NING G B, et al. Apoptosis of chondrocytes in tibial dyschondroplasia induced by thiram in broilers[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(12): 2421–2428. (in Chinese)
[18] RATH N C, HUFF W E, HUFF G R. Thiram-induced changes in the expression of genes relating to vascularization and tibial dyschondroplasia[J]. Poult Sci, 2007, 86(11): 2390–2395. DOI: 10.3382/ps.2007-00219
[19] 卢晓晓. 肉鸡谷胱甘肽S-转移酶A3基因的克隆及蛋白的表达和纯化[D]. 太谷: 山西农业大学, 2016.
LU X X. Cloning, expression and purification of broilers Glutathione S-Transferase A3[D]. Taigu: Shanxi Agricultural University, 2016. (in Chinese)
[20] 田文霞, 李家奎, 王瑞, 等. 四甲基秋兰姆二硫化物对肉鸡胫骨生长板超微结构的影响[J]. 畜牧兽医学报, 2013, 44(6): 965–971.
TIAN W X, LI J K, WANG R, et al. The ultrastructure changes of tibia growth plate in broiler chickens with a thiram-feeding procedure[J]. Acta Veterinaria et Zootechnica Sinica, 2013, 44(6): 965–971. DOI: 10.11843/j.issn.0366-6964.2013.06.020 (in Chinese)
[21] 田文霞, 李家奎, 毕丁仁, 等. 福美双对肉鸡生长性能和胫骨软骨发育不良组织病理学变化的影响[J]. 畜牧兽医学报, 2008, 39(6): 733–738.
TIAN W X, LI J K, BI D R, et al. Effect of Thiram on Growth Performance and Histopathologic Changes of tibial dyschondroplasia in Broiler[J]. Acta Veterinaria et Zootechnica Sinica, 2008, 39(6): 733–738. (in Chinese)
[22] XU M, ZHANG H M, LEE L, et al. Gene expression profiling in rMd5-and rMd5Δmeq-infected chickens[J]. Avian Dis, 2011, 55(3): 358–367. DOI: 10.1637/9608-120610-Reg.1
[23] KOGUT M H, IQBAL M, HE H Q, et al. Expression and function of Toll-like receptors in chicken heterophils[J]. Dev Comp Immunol, 2005, 29(9): 791–807. DOI: 10.1016/j.dci.2005.02.002
[24] JIE H, LIAN L, QU L J, et al. Differential expression of Toll-like receptor genes in lymphoid tissues between Marek's disease virus-infected and noninfected chickens[J]. Poult Sci, 2013, 92(3): 645–654. DOI: 10.3382/ps.2012-02747
[25] 宁官保, 田文霞, 王瑞, 等. 福美双诱发肉鸡胫骨软骨发育不良早期生长板消减cDNA文库的构建[J]. 中国农业科学, 2011, 44(4): 829–834.
NING G B, TIAN W X, WANG R, et al. Construction of subtracted cDNA library of the early growth plate in broiler chickens with thiram-induced tibial dyschondroplasia[J]. Scientia Agricultura Sinica, 2011, 44(4): 829–834. (in Chinese)
[26] 田文霞, 刘红霞, 喻进, 等. cDNA芯片筛选肉鸡胫骨软骨发育不良相关基因[J]. 中国畜牧杂志, 2014, 50(17): 17–20.
TIAN W X, LIU H X, YU J, et al. Screening of associated genes in the growth plate of broiler chickens with tibial dyschondroplasia by cDNA microarrays[J]. Chinese Journal of Animal Science, 2014, 50(17): 17–20. DOI: 10.3969/j.issn.0258-7033.2014.17.005 (in Chinese)
[27] SOOK HAN M, SHIN K J, KIM Y H, et al. Thiram and ziram stimulate non-selective cation channel and induce apoptosis in PC12 cells[J]. Neurotoxicology, 2003, 24(3): 425–434. DOI: 10.1016/S0161-813X(03)00013-5
[28] KALAI M, VAN LOO G, VANDEN BERGHE T, et al. Tipping the balance between necrosis and apoptosis in human and murine cells treated with interferon and dsRNA[J]. Cell Death Differ, 2002, 9(9): 981–994. DOI: 10.1038/sj.cdd.4401051
[29] YU D S, WU C L, PING S Y, et al. Bacille Calmette-Guerin can induce cellular apoptosis of urothelial cancer directly through toll-like receptor 7 activation[J]. Kaohsiung J Med Sci, 2015, 31(8): 391–397. DOI: 10.1016/j.kjms.2015.05.005
[30] LIN X, HUANG H T, YOU Y W, et al. Activation of TLR5 induces podocyte apoptosis[J]. Cell Biochem Funct, 2016, 34(2): 63–68. DOI: 10.1002/cbf.3165
[31] KIM A S, CHAE C H, KIM J, et al. Silver nanoparticles induce apoptosis through the Toll-like receptor 2 pathway[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2012, 113(6): 789–798. DOI: 10.1016/j.oooo.2012.01.019
[32] LV J L, JIA R H, YANG D P, et al. Candesartan attenuates Angiotensin Ⅱ-induced mesangial cell apoptosis via TLR4/MyD88 pathway[J]. Biochem Biophys Res Commun, 2009, 380(1): 81–86. DOI: 10.1016/j.bbrc.2009.01.035
[33] LI W Q, JIANG Q, KHALED A R, et al. Interleukin-7 inactivates the pro-apoptotic protein bad promoting T cell survival[J]. J Biol Chem, 2004, 279(28): 29160–29166. DOI: 10.1074/jbc.M401656200