畜牧兽医学报  2018, Vol. 49 Issue (11): 2310-2316. DOI: 10.11843/j.issn.0366-6964.2018.11.002    PDF    
哺乳动物妊娠中miRNA的作用
韩志强1,2, 宋兴超1, 王海军3, 贾赟4, 赵家平1, 赵全民2, 邢秀梅1, 徐超1     
1. 中国农业科学院特产研究所, 农业部特种经济动物遗传育种与繁殖重点实验室, 吉林省特种经济动物分子 生物学省部共建国家重点实验室, 长春 130112;
2. 吉林农业大学, 长春 130118;
3. 吉林省野生动物救护繁育中心, 长春 130119;
4. 辽宁出入境检验检疫局技术中心, 大连 116001
摘要:近年来,哺乳动物miRNA与妊娠的关系已成为研究动物妊娠方面的热点。动物体内许多miRNA能够在胎盘中优先表达,并且与妊娠和出生相关。本文结合哺乳动物miRNA对胚胎发育、怀孕、妊娠疾病及围产后期母乳产生等相关研究进行讨论和分析,总结了迄今为止哺乳动物血液和胎盘组织中miRNA对妊娠的作用,以期为研究miRNA与哺乳动物妊娠的关系提供参考。
关键词miRNA    妊娠    胚胎    生物标记物    
The Function of miRNA in Mammalian Pregnancy
HAN Zhi-qiang1,2, SONG Xing-chao1, WANG Hai-jun3, JIA Yun4, ZHAO Jia-ping1, ZHAO Quan-min2, XING Xiu-mei1, XU Chao1     
1. Ministry of Agriculture, State Key Laboratory of Special Economic Animal Molecular Biology, Key Laboratory of Special Economic Animal Genetic, Breeding and Reproduction of Ministry of Agriculture, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China;
2. Jilin Agricultural University, Changchun 130118, China;
3. Jilin Wild Animal Conservation and Breeding Center, Changchun 130119, China;
4. Liaoning Entry-Exit Inspection and Quarantine Bureau, Dalian 116001, China
Abstract: In recent years, the relationship between miRNA and pregnancy in mammals has become a hot topic. The majority of miRNA can be preferentially expressed in the animal placenta, and they are related to pregnancy and birth of mammals. The effects of miRNA on embryo development, pregnancy, pregnancy diseases and breast milk production in the late perinatal period in mammals were analysed and discussed in this paper. The effects of miRNA in mammalian blood and placenta on pregnancy were summarized, wihch will provide some references for comprehending the relationship between miRNA and mammalian pregnancy.
Key words: miRNA     pregnancy     embryo     biomarker    

miRNA是一类小的非编码RNA,广泛存在于动物的血清、血浆、唾液、初乳、腹膜液、精液、卵泡液等生物体液中,并在人和许多动物的生理(怀孕)和病理过程中起着关键作用。miRNA具有调节基因表达的功能,在基因表达中起着“微调”而不是“开关”的作用,并与多种细胞的代谢、分化、增殖和凋亡过程有关[1]。1997年Lo等[2]证实了母体血液中存在着部分的胎儿游离核酸,2000年Poon等[3]在母体血浆中检测到游离胎儿RNA,2008年Chim等[4]在人体血液中检测到妊娠特异性miRNA。同一物种血清中的胎盘miRNA水平在个体之间具有高度相似性[5]。由于血浆中存在的miRNA比mRNA更稳定[4],所以母体血浆中胎盘miRNA的含量可作为监测胎盘基因调控的重要依据。除了血液,胎盘亦是miRNA高度富集的器官之一[6],动物胎盘功能和动物妊娠与胎盘中的特异性miRNA簇具有十分重要的关系[7-9]。miRNA参与胚胎着床前子宫内膜的发育[10],调节炎症反应及免疫耐受相关基因在怀孕开始与维持过程中的表达。

1 妊娠相关的miRNA簇

目前为止,已报道了600余种miRNA在人体胎盘的动态表达。胎盘miRNA可通过3个miRNA簇内的多种miRNA来表达,其中包括C14MC簇(chromosome 14 miRNA cluster, C14MC)、C19MC簇(chromosome 19 miRNA cluster, C19MC)以及miR-371-3簇[11-12]。特别是怀孕期间,妊娠相关胎盘miRNA簇的表达量在不断发生着变化[11, 13]。血液中的胎盘miRNA主要来源于绒毛滋养层。miRNA簇广泛存在于母体血液循环中,所以对动物妊娠诊断来说具有极大的应用潜力。

1.1 C14MC簇

C14MC又被称为Mirg簇[14]、miR-379/miR-410簇或miR-379/miR- 656簇[15],包含约52个miRNA基因(产生63个成熟miRNA)[11-12, 16]。C14MC簇在真哺乳亚纲物种中是保守的,仅由母本遗传的等位基因(父本等位基因被甲基化)表达,并且主要在发育中的胚胎(头和躯干)和胎盘组织表达,也在滋养层细胞高度表达[17]。C14MC簇具有促进哺乳动物胎盘进化的作用[15]

1.2 C19MC簇

C19MC簇位于19号染色体上,是迄今为止人染色体上最大的miRNA基因簇之一。C19MC属灵长类动物的特异性miRNA家族,大鼠、小鼠以及狗的体内并没有发现该miRNA簇的同源物[18]。C19MC簇包括了46个miRNA(产生58个成熟miRNA)[17]。与C14MC簇类似的是,C19MC簇也位于印迹基因内,与C14MC相反的是,C19MC受17.6 kb上游CpG启动子区甲基化控制,仅由父本遗传等位基因表达[19]。印迹基因在细胞分化和命运的调控中具有重要作用,并且它们大都仅在胚胎期或胎盘组织中表达。C19MC的表达主要受生殖系统和胎盘的影响[13]。研究表明,C19MC簇在胚胎发育中具有重要的作用,妊娠早期许多外周体液中C19MC簇miRNA表达量升高[20]

1.3 miR-371-3簇

miR-371-3簇主要由hsa-miR-371a-3p、hsa-miR-372和hsa-miR-373-3p产生的6个成熟RNA组成的。miR-371-3簇共享着相同种子序列“AAG UGC”,并且该共享相同种子序列miRNA超家族还包括小鼠同源物簇miR-290-295[9]。miR-371-3簇位于与C19MC簇下游约25 kb的1 050 bp区域内[21]。与C14MC簇和C19MC簇类似的是仅在哺乳动物中高度保守,并且在胎盘中优先表达[22]。现已证明,miR-371-3簇是调节细胞增殖和凋亡必需的miRNA[23],因此对胚胎发育具有重要的作用。

对哺乳动物中人miRNA分析显示,C19MC簇、C14MC簇和miR-371-3簇在胎盘组织中高度表达,并且其表达随胎龄变化而变化[24]。C14MC簇和C19MC簇的水平在整个怀孕期间也不断地发生变化。C14MC簇在第一孕周的滋养层细胞中高度表达,但在妊娠中期减少。与C14MC簇相反,C19MC簇在妊娠前期表达较低,但在妊娠末期高度表达。妊娠终止后,受胎盘影响C14MC簇和C19MC簇妊娠相关的miRNA表达水平显著下降[11, 25]。胚胎与血液中的miRNA的变化反映并维持着动物机体妊娠进程,以miRNA鉴定为基础进行妊娠研究会是未来发展的大趋势。

2 miRNA与早期妊娠诊断

早期妊娠诊断是哺乳动物繁殖管理的重要环节,其对于提高动物妊娠率尤为重要[26]。循环miRNA则对妊娠诊断具有潜在的预测性、特异性、敏感性,并且能以非侵入性的方式获得,其检测效率也相对较高[27-28]。Ioannidis和Donadeu[29]首次确定了牛早期妊娠期间血浆中miRNA的变化水平,发现了10个最丰富的miRNA,即bta-miR-133a、bta-miR-486、bta-miR-22-3p、bta-miR-19、bta-miR-191、bta-miR-423-5p、bta-miR-10b、bta-miR-142-5p、bta-miR-27b和bta-miR-30d,占总miRNA量的61%,其中,怀孕母牛第16天miR-133a表达水平比同期非怀孕小母牛高出7.4倍,并发现在怀孕16~24天期间miR-26a水平升高2倍以上。Ioannidis和Donadeu[30]进一步研究发现,最早可在牛妊娠第8天检测到miR-26a的水平明显增加,另外,第16天与第8天相比miR-101的水平也趋于升高。近期在猪和羊的研究中也发现,妊娠第20天时miR-26a在受孕卵巢中的表达水平出现增加[31-32]。在怀孕羊中还发现,miR-30c、miR-132、miR-379、miR-199a-3p和miR-320也出现差异表达。另有研究提出,bta-mir-140可作为早期妊娠诊断的分子生物标志物[33],这为研究者们通过miRNA进行早期妊娠诊断提供了新的依据。近年来,诸多学者提出通过对奶中miRNA谱高通量测序分析进行妊娠诊断也具有十分重要的意义[34]。miRNA广泛存在于血液[35]、唾液[36]、尿[37]和牛奶[38]等多种动物体液中,这些体液中的miRNA将来均有望成为研究妊娠诊断理想的分子标志物。

3 miRNA与妊娠相关疾病的关系

miRNA除了在正常妊娠中发挥作用,其动态调节基因表达的能力也有助于妊娠相关病症的诊断,包括先兆子痫、异位妊娠、复发性流产、早产和胎儿宫内发育迟缓等[39]。虽然怀孕期间miRNA作为标志物的鉴定仍处于初期阶段,但现在已经筛选出了许多具有研究意义的miRNA。现阶段对于除人外的哺乳动物妊娠疾病与miRNA研究较少,以下主要讨论人常见怀孕异常引发的疾病与miRNA特征性关系。

3.1 miRNA与先兆子痫的关系

先兆子痫(preeclampsia,PE)是指在哺乳动物妊娠后半期、分娩期或分娩后期出现高血压、蛋白尿或其他系统疾病的一种妊娠相关综合征[40]。PE在人中发病率高达8%[41], 然而PE在妊娠早期症状并不明显,很难进行诊断,因此寻找某种鉴定早期PE的方法至关重要。有研究表明,miRNA可参与PE的发病机制[42]。Ishibashi等[43]对人正常胎盘和PE胎盘之间的miRNA进行大规模高通量测序,筛选出了先兆子痫胎盘中显著上调的22种miRNA,为研究先兆子痫提供了有力依据。Yang等[44]研究发现,PE患者妊娠前3个月miRNA表达量有15个上调,7个轻度下调。其中严重PE患者血浆中的miR-24、miR-26a、miR-103、miR-130b、miR-181a、miR-342-3p和miR-574-5p表达量升高。Loux等[45]在孕马体内发现,与PE有关的miR-204b和hsa-miR-204表达上调。De Bem等[46]证明,妊娠奶牛血液中hsa-miR-26a水平增加与妊娠有关,这种miRNA与先兆子痫相关。先兆子痫的发生可能是由母体和胎儿-胎盘循环中的血管内皮功能障碍引起的,这种功能障碍会引起包括调节血管张力、膜转运功能、内皮存活或增殖、血管生成和代谢途径等相关miRNA表达量发生改变。

3.2 miRNA与异位妊娠的关系

异位妊娠(ectopic pregnancy,EP)是指孕卵在子宫腔外着床发育的异常妊娠过程,也称“宫外孕”,孕妇发病率为1%~2%[47]。现阶段EP检测主要有两种方法,一种是阴道超声检查,但是经阴道超声不能准确地确定EP;另一种是通过检测母体血清中的人绒毛膜促性腺激素(HCG)和孕酮浓度,然而,通过血HCG和孕酮浓度对EP的诊断方法易产生假阳性和假阴性结果[48]。因此寻求一种快速、准确鉴定异位妊娠的方法至关重要。Zhao等[48]为了寻找可以更准确、敏感地鉴定人的异位妊娠生物标志物,比较了发生自发流产(spontaneous abortion, SA)和正常妊娠(normal pregnancy, NP)的EP患儿血清样本中妊娠相关miRNA的表达,结果显示,EP或SA与NP相比,miR-517a、miR-519d和miR-525-3p的表达量较低,而miR-323-3p表达量明显高于EP。Lu等[49]研究发现,SA和EP患者与正常孕妇相比,血清miRNA中的5种miRNA(miR-218、miR-233、miR-141、miR-873和miR-323)出现差异表达,并且miR-873作为单一标记具有最高的灵敏度,EP检测率高达61.76%。虽然对于miRNA异位妊娠研究较多,但现阶段利用miRNA来检测异位妊娠还不成熟,还需进一步筛选特异性标志物,通过HCG和孕酮与miRNA结合评估可以提高miRNA作为生物标志物的诊断性能,也可以提高异位妊娠的总体诊断效率。

3.3 miRNA与早产的关系

人早产(premature delivery,PTD)分娩的定义为在妊娠37周之前的分娩。对于除人外的哺乳动物来说,妊娠时间各有差异,因此对于早产的时间定义也有所不同。研究发现,PTD患者中miRNA出现了差异表达[50-51]。Enquobahrie等[50]发现,人早产与miR-210和mir-223的含量增加相关。Pineles等[51]进行了miRNA微阵列分析,发现人绒毛膜中的39个miRNA在术前和早产组之间相比出现差异表达,miR-338、miR-449、miR-136和miR-199a表达出现下降。Mayor-Lynn等[52]分析了人早产和正常胎盘之间的miRNA表达谱,发现了20种差异表达miRNA,在早产孕妇胎盘中miR-15b、miR-181a、miR-210、miR-296-3p、miR-483-5p和miR-493等许多miRNA出现差异表达。Gray等[53]则证实,人母体血浆中miR-223表达升高与自发性早产相关,并认为miR-223有望成为早期预测自发性早产的miRNA生物标志物。另外,怀孕早期外周血中miRNA的定量分析对自发性早产的敏感和特异性预测也具有较高价值[54]

4 miRNA与母乳的关系

母乳中含有丰富的分泌型免疫球蛋白和双歧因子,具有提高动物免疫力、促进动物生长、降低动物幼崽发病率和死亡率的作用,对于新生哺乳动物幼崽来说至关重要。miRNA与催乳素生成途径相关,能够参与乳汁合成的生理过程[55]。现在有超过1 400种成熟的miRNA在人乳中表达[56],人乳中还含有丰富的免疫相关miRNA[56-57]。牛乳中的一些miRNA与神经系统通路有关,并可能介导大脑发育,如miR-118-2靶向了神经系统中丰富的蛋白神经元跨膜蛋白[58]。人乳中的一些miRNA还具有组织特异性[59],如miR-142-5p具有造血特异性[60]。人乳中miRNA还可能促进婴儿特定器官和组织的发育。此外,牛乳中miRNA与牛奶代谢途径相关,如let-7家族大量存在于牛奶中,参与了葡萄糖代谢,并可调节葡萄糖耐受量和胰岛素敏感性[58-59, 61]。另外,有研究发现,miRNA-148a在人乳中高度表达,并且miRNA-148a在白血病中表达较少,由此可推测,母乳中miRNA-148a等miRNA可能对儿童白血病具有保护作用[62]。值得注意的是,牛乳成分(包括miRNA)的昼夜变化可能对幼畜胃肠昼夜节律性的建立和调整有益[59]

5 展望

众多研究表明,miRNA与妊娠过程中的胚胎发育、妊娠疾病诊断及产后哺乳存在一定的关系。现阶段miRNA参与妊娠的多数功能是通过表达模式推测的,但尚未在多数哺乳动物中进行细致的功能研究,并且大都是通过采取部分组织或体液进行检测,并不一定能完全反映其在动物体内的正常生理水平。若miRNA作为怀孕功能验证的诊断工具,其快速精确的诊断特点对妊娠来说是不可或缺的,未来将miRNA应有到妊娠诊断时要注重对其稳定性进行深入探究。随着互联网技术和生物学检测手段的不断发展,miRNA在哺乳动物妊娠过程中的调控功能也会逐渐明晰,必将助力于畜牧与医药行业的发展。

参考文献
[1] CAI M, KOLLURU G K, AHMED A. Small molecule, big prospects:microRNA in pregnancy and its complications[J]. J Pregnancy, 2017, 2017: 6972732.
[2] LO Y M D, CORBETTA N, CHAMBERLAIN P F, et al. Presence of fetal DNA in maternal plasma and serum[J]. Lancet, 1997, 350(9076): 485–487. DOI: 10.1016/S0140-6736(97)02174-0
[3] POON L L M, LEUNG T N, LAU T K, et al. Presence of fetal RNA in maternal plasma[J]. Clin Chem, 2000, 46(11): 1832–1834.
[4] CHIM S S C, SHING T K F, HUNG E C W, et al. Detection and characterization of placental microRNAs in maternal plasma[J]. Clin Chem, 2008, 54(3): 482–490. DOI: 10.1373/clinchem.2007.097972
[5] GILAD S, MEIRI E, YOGEV Y, et al. Serum micro-RNAs are promising novel biomarkers[J]. PLoS One, 2008, 3(9): e3148. DOI: 10.1371/journal.pone.0003148
[6] MORALES-PRIETO D M, OSPINA-PRIETO S, SCHMIDT A, et al. Elsevier trophoblast research award lecture:Origin, evolution and future of placenta miRNAs[J]. Placenta, 2014, 35: S39–S45. DOI: 10.1016/j.placenta.2013.11.017
[7] ENQUOBAHRIE D A, ABETEW D F, SORENSEN T K, et al. Placental microRNA expression in pregnancies complicated by preeclampsia[J]. Am J Obstet Gynecol, 2011, 204(2): 178.e12–178.e21. DOI: 10.1016/j.ajog.2010.09.004
[8] MORALES-PRIETO D M, OSPINA-PRIETO S, CHAIWANGYEN W, et al. Pregnancy-associated miRNA-clusters[J]. J Reprod Immunol, 2013, 97(1): 51–61. DOI: 10.1016/j.jri.2012.11.001
[9] 吴昊, 张运海, 凌英会. 非编码RNA在胚胎发育过程中的作用[J]. 畜牧兽医学报, 2017, 48(1): 1–7.
WU H, ZHANG Y H, LING Y H. The Progress of recent advances in the ncRNA-mediated regulation during embryogenesis[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(1): 1–7. (in Chinese)
[10] TESFAYE D, GEBREMEDHN S, SALILEW-WONDIM D, et al. microRNAs:Tiny molecules with a significant role in mammalian follicular and oocyte development[J]. Reproduction, 2018, 155(3): R121–R135. DOI: 10.1530/REP-17-0428
[11] MIURA K, MIURA S, YAMASAKI K, et al. Identification of pregnancy-associated microRNAs in maternal plasma[J]. Clin Chem, 2010, 56(11): 1767–1771. DOI: 10.1373/clinchem.2010.147660
[12] MORALES-PRIETO D M, CHAIWANGYEN W, OSPINA-PRIETO S, et al. microRNA expression profiles of trophoblastic cells[J]. Placenta, 2012, 33(9): 725–734. DOI: 10.1016/j.placenta.2012.05.009
[13] LIN S, CHEUNG W K C, CHEN S, et al. Computational identification and characterization of primate-specific microRNAs in human genome[J]. Comput Biol Chem, 2010, 34(4): 232–241. DOI: 10.1016/j.compbiolchem.2010.08.001
[14] BORTOLIN-CAVAILLÉ M L, DANCE M, WEBER M, et al. C19MC microRNAs are processed from introns of large Pol-Ⅱ, non-protein-coding transcripts[J]. Nucleic Acids Res, 2009, 37(10): 3464–3473. DOI: 10.1093/nar/gkp205
[15] GLAZOV E A, MCWILLIAM S, BARRIS W C, et al. Origin, evolution, and biological role of miRNA cluster in DLK-DIO3 genomic region in placental mammals[J]. Mol Biol Evol, 2008, 25(5): 939–948. DOI: 10.1093/molbev/msn045
[16] GARDINER E, BEVERIDGE N J, WU J Q, et al. Imprinted DLK1-DIO3 region of 14q32 defines a schizophrenia-associated miRNA signature in peripheral blood mononuclear cells[J]. Mol Psychiatry, 2012, 17(8): 827–840. DOI: 10.1038/mp.2011.78
[17] MOUILLET J F, OUYANG Y S, COYNE C B, et al. microRNAs in placental health and disease[J]. Am J Obstet Gynecol, 2015, 213(4): S163–S172. DOI: 10.1016/j.ajog.2015.05.057
[18] ZHANG R, WANG Y Q, SU B. Molecular evolution of a primate-specific microRNA family[J]. Mol Biol Evol, 2008, 25(7): 1493–1502. DOI: 10.1093/molbev/msn094
[19] NOGUER-DANCE M, ABU-AMERO S, AL-KHTIB M, et al. The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta[J]. Hum Mol Genet, 2010, 19(18): 3566–3582. DOI: 10.1093/hmg/ddq272
[20] SCHMIDT K J, BLOCK L N, GOLOS T G. Defining the rhesus macaque placental miRNAome:Conservation of expression of placental miRNA clusters between the macaque and human[J]. Placenta, 2018, 65: 55–64. DOI: 10.1016/j.placenta.2018.04.003
[21] SUH M R, LEE Y, KIM J Y, et al. Human embryonic stem cells express a unique set of microRNAs[J]. Dev Biol, 2004, 270(2): 488–498. DOI: 10.1016/j.ydbio.2004.02.019
[22] HROMADNIKOVA I, KOTLABOVA K, ONDRACKOVA M, et al. Expression profile of C19MC microRNAs in placental tissue in pregnancy-related complications[J]. DNA Cell Biol, 2015, 34(6): 437–457. DOI: 10.1089/dna.2014.2687
[23] GROTEN T, SCHOENLEBEN M, MORALES-PRIETO D, et al. Association of the miR-371-3 cluster and trophoblast migration[J]. Placenta, 2013, 34(9): A63.
[24] LUO S S, ISHIBASHI O, ISHIKAWA G, et al. Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes[J]. Biol Reprod, 2009, 81(4): 717–729. DOI: 10.1095/biolreprod.108.075481
[25] KOTLABOVA K, DOUCHA J, HROMADNIKOVA I. Placental-specific microRNA in maternal circulation-identification of appropriate pregnancy-associated microRNAs with diagnostic potential[J]. J Reprod Immunol, 2011, 89(2): 185–191. DOI: 10.1016/j.jri.2011.02.006
[26] 左海洋, 陈晓丽, 蔡勇, 等. 奶牛早期妊娠诊断技术研究进展[J]. 畜牧兽医学报, 2014, 45(10): 1584–1591.
ZUO H Y, CHEN X L, CAI Y, et al. Advance of early pregnancy diagnosis technology in dairy cows[J]. Acta Veterinaria et Zootechnica Sinica, 2014, 45(10): 1584–1591. (in Chinese)
[27] ETHERIDGE A, LEE I, HOOD L, et al. Extracellular microRNA:A new source of biomarkers[J]. Mutat Res, 2011, 717(1-2): 85–90. DOI: 10.1016/j.mrfmmm.2011.03.004
[28] GUELFI G, STEFANETTI V, DE LUCA S, et al. Serum microRNAs in buffalo cows:Potential biomarkers of pregnancy[J]. Res Vet Sci, 2017, 115: 294–300. DOI: 10.1016/j.rvsc.2017.06.001
[29] IOANNIDIS J, DONADEU F X. Circulating miRNA signatures of early pregnancy in cattle[J]. BMC Genomics, 2016, 17: 184. DOI: 10.1186/s12864-016-2529-1
[30] IOANNIDIS J, DONADEU F X. Changes in circulating microRNA levels can be identified as early as day 8 of pregnancy in cattle[J]. PLoS One, 2017, 12(4): e0174892. DOI: 10.1371/journal.pone.0174892
[31] KRAWCZYNSKI K, NAJMULA J, BAUERSACHS S, et al. microRNAome of porcine conceptuses and trophoblasts:Expression profile of microRNAs and their potential to regulate genes crucial for establishment of pregnancy[J]. Biol Reprod, 2015, 92(1): 21.
[32] ZHANG X D, ZHANG Y H, LING Y H, et al. Characterization and differential expression of microRNAs in the ovaries of pregnant and non-pregnant goats (Capra hircus)[J]. BMC Genomics, 2013, 14: 157. DOI: 10.1186/1471-2164-14-157
[33] FIANDANESE N, VIGLINO A, STROZZI F, et al. 71 Circulating micrornas as potential biomarkers of early pregnancy in high-producing dairy cows[J]. Reprod, Ferti Dev, 2015, 28(2): 165.
[34] SCHANZENBACH C I, KIRCHNER B, ULBRICH S E, et al. Can milk cell or skim milk miRNAs be used as biomarkers for early pregnancy detection in cattle?[J]. PLoS One, 2017, 12(2): e0172220. DOI: 10.1371/journal.pone.0172220
[35] SPORNRAFT M, KIRCHNER B, PFAFFL M W, et al. Comparison of the miRNome and piRNome of bovine blood and plasma by small RNA sequencing[J]. Biotechnol Lett, 2015, 37(6): 1165–1176. DOI: 10.1007/s10529-015-1788-2
[36] GALLO A, TANDON M, ALEVIZOS I, et al. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes[J]. PLoS One, 2012, 7(3): e30679. DOI: 10.1371/journal.pone.0030679
[37] CHENG L, SUN X, SCICLUNA B J, et al. Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine[J]. Kidney Int, 2014, 86(2): 433–444. DOI: 10.1038/ki.2013.502
[38] CHEN T, XI Q Y, YE R S, et al. Exploration of microRNAs in porcine milk exosomes[J]. BMC Genomics, 2014, 15: 100. DOI: 10.1186/1471-2164-15-100
[39] SCHJENKEN J E, ZHANG B H, CHAN H Y, et al. miRNA regulation of immune tolerance in early pregnancy[J]. Am J Reprod Immunol, 2016, 75(3): 272–280. DOI: 10.1111/aji.2016.75.issue-3
[40] ESCUDERO C A, HERLITZ K, TRONCOSO F, et al. Role of extracellular vesicles and microRNAs on dysfunctional angiogenesis during preeclamptic pregnancies[J]. Front Physiol, 2016, 7: 98.
[41] LAGANÀ A S, VITALE S G, SAPIA F, et al. miRNA expression for early diagnosis of preeclampsia onset:Hope or hype?[J]. J Matern-Fetal Neonatal Med, 2018, 31(6): 817–821. DOI: 10.1080/14767058.2017.1296426
[42] GUNEL T, HOSSEINI M K, GUMUSOGLU E, et al. Expression profiling of maternal plasma and placenta microRNAs in preeclamptic pregnancies by microarray technology[J]. Placenta, 2017, 52: 77–85. DOI: 10.1016/j.placenta.2017.02.019
[43] ISHIBASHI O, OHKUCHI A, ALI M M, et al. Hydroxysteroid (17-β) dehydrogenase 1 is dysregulated by miR-210 and miR-518c that are aberrantly expressed in preeclamptic placentas:A novel marker for predicting preeclampsia[J]. Hypertension, 2012, 59(2): 265–273. DOI: 10.1161/HYPERTENSIONAHA.111.180232
[44] YANG Q, LU J F, WANG S Q, et al. Application of next-generation sequencing technology to profile the circulating microRNAs in the serum of preeclampsia versus normal pregnant women[J]. Clinica Chim Acta, 2011, 412(23-24): 2167–2173. DOI: 10.1016/j.cca.2011.07.029
[45] LOUX S C, SCOGGIN K E, BRUEMMER J E, et al. Evaluation of circulating miRNAs during late pregnancy in the mare[J]. PLoS One, 2017, 12(4): e0175045. DOI: 10.1371/journal.pone.0175045
[46] DE BEM T H C, DA SILVEIRA J C, SAMPAIO R V, et al. Low levels of exosomal-miRNAs in maternal blood are associated with early pregnancy loss in cloned cattle[J]. Sci Rep, 2017, 7(1): 14319. DOI: 10.1038/s41598-017-14616-1
[47] BARNHART K T. Ectopic pregnancy[J]. N Engl J Med, 2009, 361(4): 379–387. DOI: 10.1056/NEJMcp0810384
[48] ZHAO Z, ZHAO Q H, WARRICK J, et al. Circulating microRNA miR-323-3p as a biomarker of ectopic pregnancy[J]. Clin Chem, 2012, 58(5): 896–905. DOI: 10.1373/clinchem.2011.179283
[49] LU Q, YAN Q, XU F Y, et al. microRNA-873 is a potential serum biomarker for the detection of ectopic pregnancy[J]. Cell Physiol Biochem, 2017, 41(6): 2513–2522. DOI: 10.1159/000475946
[50] ENQUOBAHRIE D A, HENSLEY M, QIU C F, et al. Candidate gene and microRNA expression in fetal membranes and preterm delivery risk[J]. Reprod Sci, 2016, 23(6): 731–737. DOI: 10.1177/1933719115612925
[51] PINELES B L, ROMERO R, MONTENEGRO D, et al. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia[J]. Am J Obstet Gynecol, 2007, 196(3): 261.
[52] MAYOR-LYNN K, TOLOUBEYDOKHTI T, CRUZ A C, et al. Expression profile of microRNAs and mRNAs in human placentas from pregnancies complicated by preeclampsia and preterm labor[J]. Reprod Sci, 2011, 18(1): 46–56. DOI: 10.1177/1933719110374115
[53] GRAY C, MCCOWAN L M, PATEL R, et al. Maternal plasma miRNAs as biomarkers during mid-pregnancy to predict later spontaneous preterm birth:A pilot study[J]. Sci Rep, 2017, 7(1): 815. DOI: 10.1038/s41598-017-00713-8
[54] WINGER E E, REED J L, JI X H. Early first trimester peripheral blood cell microRNA predicts risk of preterm delivery in pregnant women: Proof of concept[J]. PLoS One, 2017, 12(7): e0180124. DOI: 10.1371/journal.pone.0180124
[55] LIN X Z, LUO J, ZHANG L P, et al. microRNAs synergistically regulate milk fat synthesis in mammary gland epithelial cells of dairy goats[J]. Gene Expr, 2013, 16(1): 1–13. DOI: 10.3727/105221613X13776146743262
[56] ALSAWEED M, HARTMANN P E, GEDDES D T, et al. microRNAs in breastmilk and the lactating breast:Potential immunoprotectors and developmental regulators for the infant and the mother[J]. Int J Environ Res Public Health, 2015, 12(11): 13981–14020. DOI: 10.3390/ijerph121113981
[57] ZHOU Q, LI M Z, WANG X Y, et al. Immune-related microRNAs are abundant in breast milk exosomes[J]. Int J Biol Sci, 2012, 8(1): 118–123. DOI: 10.7150/ijbs.8.118
[58] MUNCH E M, HARRIS R A, MOHAMMAD M, et al. Transcriptome profiling of microRNA by Next-Gen deep sequencing reveals known and novel miRNA species in the lipid fraction of human breast milk[J]. PLoS One, 2013, 8(2): e50564. DOI: 10.1371/journal.pone.0050564
[59] FLORIS I, BILLARD H, BOQUIEN C Y, et al. miRNA analysis by quantitative PCR in preterm human breast milk reveals daily fluctuations of hsa-miR-16-5p[J]. PLoS One, 2015, 10(10): e0140488. DOI: 10.1371/journal.pone.0140488
[60] MOBUCHON L, LE GUILLOU S, MARTHEY S, et al. Sunflower oil supplementation affects the expression of miR-20a-5p and miR-142-5p in the lactating bovine mammary gland[J]. PLoS One, 2017, 12(12): e0185511. DOI: 10.1371/journal.pone.0185511
[61] ZHU H, SHYH-CHANG N, SEGRÈ A V, et al. The Lin28/let-7 axis regulates glucose metabolism[J]. Cell, 2011, 147(1): 81–94. DOI: 10.1016/j.cell.2011.08.033
[62] AMITAY E L, KEINAN-BOKER L. Breastfeeding and childhood leukemia incidence:A meta-analysis and systematic review[J]. JAMA Pediatr, 2015, 169(6): e151025. DOI: 10.1001/jamapediatrics.2015.1025