畜牧兽医学报  2018, Vol. 49 Issue (10): 2086-2091. DOI: 10.11843/j.issn.0366-6964.2018.10.004    PDF    
动物发情鉴定技术的研究进展
韩志强1,2, 王海军3, 赵家平2, 宋兴超2, 邢秀梅2, 陈晓丽4, 赵全民1, 徐超2     
1. 吉林农业大学, 长春 130118;
2. 中国农业科学院特产研究所, 特种经济动物遗传育种与繁殖重点实验室, 吉林省特种经济动物分子生物学省部共建国家重点实验室, 长春 130112;
3. 吉林省野生动物救护繁育中心, 长春 130119;
4. 中国农业科学院北京畜牧兽医研究所, 北京 100193
摘要:发情鉴定是通过动物行为表现和生殖生理的规律性变化来确定发情时间的检测手段。其检测效率和准确性直接影响了动物的繁育性能和经济效益。本文结合目前国内外所提出的常规发情鉴定方法、生物学检测方法和自动化发情监测设备进行综述,以期为提高动物发情检测效率提供参考。
关键词发情检测    灵敏度    准确率    检测效率    
Research Progress of Estrus Identification Technology in Animals
HAN Zhi-qiang1,2, WANG Hai-jun3, ZHAO Jia-ping2, SONG Xing-chao2, XING Xiu-mei2, CHEN Xiao-li4, ZHAO Quan-min1, XU Chao2     
1. Jilin Agricultural University, Changchun 130118, China;
2. Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, State Key Laboratory of Special Economic Animal Molecular Biology, Institute of Special Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun 130112, China;
3. Jilin Wild Animal Conservation and Breeding Center, Changchun 130119, China;
4. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Abstract: The estrus diagnosis is a detective technology that confirm estrus time by observing the regular changes in behavior performance and reproductive physiology of animals. The reproductive performance and economic benefit will be affected by detecting efficiency and accuracy of estrus directly. The conventional estrus identification method, biological detection method and estrus automation monitoring equipment are summaried and reviewed in this paper. Aim to provide the reference for improving the detection efficiency of animal estrus.
Key words: estrus detection     sensitivity     accuracy     detection efficiency    

随着养殖业集约化、规模化发展,繁殖育种已成为现代畜牧养殖最重要的环节之一,动物品种的优劣、繁殖性能的高低将直接决定养殖场的经济效益及发展前景。其中,动物的繁殖性能受发情检出率、受孕率、妊娠率、开放天数和产犊间隔等多种因素的影响,而发情检出率是其他因素的先决条件,发情鉴定的目的是为输精提供最佳时机、提高繁殖效率、降低养殖成本。准确判断发情时期能够显著降低配种失败率及空怀率[1],提高动物的受孕率、产犊率等。因此,建立科学准确的动物发情鉴定方法尤为重要。目前,对家畜的发情鉴定仍以传统方法为主,这些方法主要凭借人的观察和感觉能力,因而检测结果受养殖人员经验与母畜发情表现强度的限制,而现代生物学手段和多种自动化监测装置将来可补充甚至替代传统发情鉴定方法[2]。通过检测动物发情期间的激素水平、活动变化、温度变化、细胞变化、站立或俯卧时间以及反刍时间等参数[3],根据长期追踪式的动物发情记录,建立模型进行量化分析后,可用来确定动物的发情进程。本文对传统发情鉴定方法、现代生物学手段,多种自动化发情监测装置进行概括和总结,并分析其优势与不足,以期为动物发情鉴定提供选择思路。

1 动物常规发情鉴定方法 1.1 行为观察法

行为观察法是鉴定动物发情最常用的方法,主要依据动物发情时的特殊行为表现进行综合分析判断。发情表现因动物种类不同而存在差异,如:牛和鹿发情时会表现出爬跨行为,母牛在发情期反刍时间减少、活动量增加等。猪发情时表现出拱圈、静立反射等行为[4]。动物发情时行为表现虽然多样化,且易于发现,但很难据此进行精确把控配种时机。

1.2 外阴观察法

外阴观察法是判断动物发情相对准确的一种方法,主要根据动物发情期外阴的直观表现进行判断。动物发情主要表现为外阴部充血、肿胀,阴道内有黏液流出等[5]。经验丰富的人员可通过动物发情时外阴部的不同表现形式及程度来判断发情状态。野生动物和散养动物很难通过该方法进行鉴定。

1.3 试情法

试情法主要是通过观察雌性动物对雄性的行为反应来判断发情的一种方法。发情时雌性动物愿意接近雄性动物,表现出求配动作。一般动物试情时,主要通过动物之间的爬跨反应来判定发情情况。牛、羊和鹿等动物试情多选用定时放牧方式[6],貂、狐和貉也常采用试情放牧法。猪试情多采用压背法。试情法简单易行且最接近动物自然交配状态,但工作量较大。

1.4 阴道检查法

动物发情时子宫口开张、黏液较多、黏膜呈现潮红色,检查时用开膣器扩张母畜阴道,通过观察阴道黏膜颜色、润滑度及子宫颈肿胀程度和黏液分泌等变化情况判断发情状态[7]。该方法对操作人员要求较高,一般无法精确确定发情阶段,应用时应防止交叉感染。

1.5 直肠检查法

大型动物可通过直肠触诊检查子宫角的变化及卵泡的发育状态来判断发情进程。López-Gatius等[8]发现,通过直肠检查确诊的牛发情检出率高达96.2%,该方法优点在于可以准确地判断母牛所处的不同生理阶段。但该技术对操作人员的经验与熟练度要求较高,体型较小的家畜无法采用。

2 动物发情的生物学检测方法 2.1 显微观察法 2.1.1 阴道涂片法

雌激素在发情周期内呈规律性变化,在雌激素的作用下阴道上皮细胞形态与数量也会出现相应变化,因此可通过观察阴道涂片中细胞的变化规律确定发情进程[9]。发情期无核角化细胞最多,且显著高于发情前期、后期和间情期[10],如操作人员经验不足可利用巴氏染色后再行判断。阴道涂片鉴定发情的准确率较高,对操作者经验要求较少,能发现母畜的隐性发情。

2.1.2 唾液结晶法

动物发情时唾液内会出现羊齿状结晶,结晶达到顶峰时也伴随着阴道细胞角质化达到峰值。唾液结晶的变化与雌性动物体中雌二醇含量变化有关,动物发情期内唾液结晶从出现不典型结晶到渐渐演化成典型的羊齿结晶,最后结晶减少消失。Pardo-Carmona等[11]、Kubátová等[12]分别在犬、猩猩上进行验证,运用唾液羊齿状结晶鉴定发情损伤性低,但其准确率、适用范围需要进一步研究。

2.2 温度监测法 2.2.1 阴道温度监测

发情时阴道温度的变化与促黄体生成素(LH)、孕酮波动[13]和排卵有关。阴道温度的监测可以判断发情进程,奶牛发情时,阴道温度可升高0.4 ℃以上。Suthar等[14]发现黄体期阴道温度略有升高((38.7±0.2)℃),排卵后阴道温度降低((38.6±0.2)℃)。Fisher等[15]采用环形电导率传感器监测成年非哺乳荷斯坦奶牛发情期阴道温度发现平均升高0.48 ℃。Redden等[16]运用无线电测法监测泌乳牛发情时阴道温度上升0.6 ℃。阴道温度检测法优点在于受季节等外界环境影响较小,结果均一稳定[13],但该方法对仪器精确度、灵敏度要求较高,操作不当可能引起炎症。

2.2.2 尾基部表面温度监测

动物发情时其尾基部表面温度随季节和昼夜变化而变化,可通过无线传感设备监测腹侧尾基部温度及变化进行发情检测。Miura等[17]研究发现,牛尾基部表面温度在发情时具有显著变化,其发情时尾基部表面温度与前3 d相同时间平均尾基部表面平均温度相比显著升高。Williams等[18]研究发现,小鼠发情前夜尾基部表面温度接近环境温度,发情当天夜晚尾基部表面温度降低。尾基部表面温度检测发情优点在于节省人力,操作方便,可以在整个发情周期内进行监测,并能观察到发情周期内动物行为的显著变化,但其易受机器灵敏度和环境影响。

2.2.3 瘤胃温度检测

奶牛的瘤胃温度在发情期间和分娩前均会发生变化[19],在发情时,瘤胃温度会有所增加,并且不受外界环境的影响[20],可很好的用于预测排卵和人工授精时机,以此提高繁殖效率。Wright等[21]通过瘤胃丸技术发现发情当天与发情前一天的同时间相比奶牛瘤胃温度值升高超过0.3 ℃。瘤胃温度检测发情虽技术水平较高,检测效率较高,但现阶段成本相对较高,并且其仅适用于反刍动物。

2.3 pH与电阻值法

动物发情时激素大量分泌并作用于阴道,使阴道内各种离子的浓度发生变化,从而改变阴道内的pH和电阻值[22]。母畜的阴道黏液pH在不同生理时期酸碱性不同,在哺乳-发情-怀孕的生理时期呈现由偏酸性-偏碱性-偏酸性的循环变化趋势。冯宾等[23]研究表明,雌鼠发情前6 h母体阴道pH偏酸性, 发情6 h后偏碱性。阴道的不同深度所测的电阻值不同,阴道中部由于测量结果准确并且使用的测量仪长度适中而广泛采用[24]。Ko等[25]研究表明,断奶后母猪阴道电阻值开始降低,在发情期间达到最低点,发情时电阻值最高。诸多研究表明,运用阴道电阻值变化来预测发情比检测(pH)波动更可靠[26]

阴道pH与电阻值法均是依据于发情时阴道内离子浓度的改变来进行发情鉴定,相对简便、准确,对经验要求较少,适用于经验较少的养殖人员,常用于牛及狐貉等动物发情鉴定。缺点在于需要多次重复测量,工作较大,并且操作不当易造成交叉感染。

2.4 激素、分子水平与发情

发情这一复杂过程受促卵泡激素(FSH)、LH、孕激素、雌激素等激素联合作用的影响[27]。发情期间血浆FSH、LH、雌二醇激素浓度升高,但黄体酮浓度变化不显著[28]。近几年,人们发现抗苗勒氏管激素(AMH)与动物发情也具有十分重要的关系,其属于转化生长因子β家族140 ku糖蛋白。AMH是由卵巢的初级卵泡、窦前卵泡和小窦卵泡颗粒细胞分泌, 其可以抑制FSH对窦前卵泡和小窦卵泡的刺激作用, 抑制优势卵泡的发育[29]。动物发情排卵期间,血浆中AMH浓度明显增加,排卵前2~3 d LH和FSH释放在逐渐降低。Aziz等[30]研究牛发情时血液中AMH、胰岛素样生长因子1(IGF1)和镉(Cd)之间的相关性。发现血液中AMH与IGF1浓度呈正相关,与Cd浓度呈负相关。发情受下丘脑-垂体-卵巢系统的调控,且与生殖激素具有十分重要的关系[31]。除了激素方面,人们还发现许多蛋白也可作为发情鉴定的指标。Lee等[32]研究牛颈部黏液和子宫内膜组织中乳铁蛋白(LF)和谷氨酸受体相互作用蛋白1(GRIP1)在发情时的表达模式,发现发情期间LF和GRIP1的表达水平比非发情期的水平高两倍。激素与蛋白等分子水平的检测对于发情鉴定具有超高的检测率,但其耗材、耗时的缺点也是无法完全规避的。

3 自动化监测设备对动物发情的检测 3.1 反刍时间

反刍时间是衡量反刍动物健康状况的重要指标,也是监测反刍动物发情的新指标。Dolecheck等[33]通过麦克风系统技术测量发现,奶牛在发情时反刍时间会发生改变,在非发情期间平均反刍时间为6.48 min·h-1,发情期的平均反刍时间为2.66 min·h-1,在受精前一天和受精当天的反刍时间均减少。奶牛发情当天反刍时间减少17%[34]。初产和经产奶牛的发情期反刍时间下降参考值不同,但在受精当天反刍时间均减少到相似程度[35-36]。反刍时间研究虽然对于反刍动物发情与健康检测具有重要意义, 但现阶段反刍时间的准确度、误差率、下降值等因素有待深入研究。

3.2 计步器检测

计步器检测是通过测量动物活动、躺卧时间和体表温度3种参数的变化来确定发情时间。Løvendahl等[37]通过电子计步器监测奶牛发情期活动发现,奶牛发情平均持续时间为10.33 h。Johnson等[38]利用计步器监测母猪发情发现,发情当天母猪活动量与发情前3 d和发情前2 d相比增加了37.8%,但与发情前一天相比差异不显著。Roelofs等[39]研究表明,初产母牛与经产母牛相比发情期间行走步数增多,并且多数动物同时发情,不仅刺激发情行为,而且还增加了发情期间的活动频率,同时发情检出率提高到95%左右。寇红祥等[40]研究表明,奶牛发情排卵时计步器的检出率高达90%,活动量与阴道黏液电阻值的综合发情检出率可高达100%。计步器检测系统与其他检测方法配合,可以显著提高动物的发情检出率。

3.3 Alpha检测器

Alpha检测器是以记录雌性动物接受爬跨为标记的检测系统,当动物出现爬跨行为时会触发压力传感器,通过转发器传输每次记录的日期和时间等数据,并将数据存储至Alpha-Receptor装置[41]。Alhamada等[41]通过使用Alpha检测器检测母羊发情情况,发现可以检测发情中100%母羊,在站立发情中能检测出94%的母羊,并且能够精确地测量公母性行为。Alpha检测器通过对连续录像动物的行为记录,可根据不同的试验条件自动监测发情开始、持续时间、强度,使发情行为量化,从而让人们充分地了解反刍动物的生殖生理学[42],但现阶段该检测器成本较高,对于中小型养殖场其成本较难承受。

3.4 红外热像仪

红外热像仪就是通过监测和记录动物外阴温度辐射热量来预测排卵状况的一种仪器[43]。根据外阴部的温度在发情前期降低,在发情期和排卵期温度则开始升高的现象[44-45],Hellebrand等[45]运用红外热像仪检测发现排卵前24 h的温度升高与发情的时间正好吻合。Scolari等[46]运用数字红外热像仪测量母猪的外阴皮肤温度在发情期间的变化,发现发情期母猪外阴皮肤温度在排卵前32 h达到(35.6±1.6) ℃的峰值,排卵前8 h下降至(33.9±1.7) ℃。使用红外热成像技术不仅可以监测动物的基本信息,而且还可以与其他方法结合,降低发情检测的成本,提高检测效率和准确性[47]

4 展望

随着Alpha检测器、红外热像仪等检测设备的发展,跟踪检测不同种类的动物发情期间在生理、行为等方面的变化规律,建立针对不同畜种的综合判断技术标准,对于提高发情鉴定准确率、提高情期受胎率具有重要意义。随着物联网等信息技术的发展,为这些技术推广应用奠定了坚实的基础,将对提高繁殖效率发挥重要作用并带来显著的经济效益。

参考文献
[1] GALVÃO K N, FEDERICO P, DE VRIES A, et al. Economic comparison of reproductive programs for dairy herds using estrus detection, timed artificial insemination, or a combination[J]. J Dairy Sci, 2013, 96(4): 2681–2693. DOI: 10.3168/jds.2012-5982
[2] FRICKE P M, CARVALHO P D, GIORDANO J O, et al. Expression and detection of estrus in dairy cows:the role of new technologies[J]. Animal, 2014, 8(S1): 134–143. DOI: 10.1017/S1751731114000299
[3] MÃLÃNCUŞ R N, MÃLÃNCUŞ C M. Relationship between daily rumination time, physical activity, estrus and metabolic changes in dairy cows[J]. Bull UASVM Vet Med, 2016, 73(2): 224–229.
[4] 秦永孝, 王玉梁, 高雪峰, 等. 基于红外设备的母猪发情状态下体温变化研究[J]. 畜牧兽医学报, 2016, 47(1): 85–91.
QIN Y X, WANG Y L, GAO X F, et al. Temperature changes during estrus in swine was studied by infrared temperature measurement device[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(1): 85–91. (in Chinese)
[5] 雷小萍, 林杉, 于要升, 等. 营养诱导舍饲哈萨克羊非繁殖季节卵巢组织中miRNAs差异表达分析[J]. 畜牧兽医学报, 2017, 48(4): 627–636.
LEI X P, LIN S, YU Y S, et al. Analyzing the differential expression of miRNAs in ovary of stall-feed Kazakh sheep induced by nutrition in non-breeding season[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(4): 627–636. (in Chinese)
[6] 王全凯, 段景玲, 李庆杰, 等. 梅花鹿人工输精中同期发情与试情对受胎率的影响[J]. 经济动物学报, 2016, 20(3): 134–135, 141.
WANG Q K, DUAN J L, LI Q J, et al. Effect of estrus synchronization and teasing in artificial insemination on conception rate of sika deer[J]. Journal of Economic Animal, 2016, 20(3): 134–135, 141. (in Chinese)
[7] VAN EERDENBURG F J C M. Estrus detection in dairy cattle:how to beat the bull[J]. Vlaams Diergen Tijds, 2006, 75: 61–69.
[8] LÓPEZ-GATIUS F, CAMÓÓN-URGEL J. Confirmation of estrus rates by palpation per rectum of genital organs in normal repeat dairy cows[J]. J Vet Med Ser A, 2010, 38(1-10): 553–556.
[9] MARQUES-LOPES J, TESFAYE E, ISRAILOV S, et al. Redistribution of NMDA receptors in estrogen-receptor-β-containing paraventricular hypothalamic neurons following slow-pressor angiotensin Ⅱ hypertension in female mice with accelerated ovarian failure[J]. NeuroEndocrinology, 2017, 104(3): 239–256. DOI: 10.1159/000446073
[10] 韩欢胜, 赵列平, 柴孟龙, 等. 梅花鹿发情期阴道细胞形态变化与最适输精期[J]. 中国兽医杂志, 2016, 52(5): 28–31.
HAN H S, ZHAO L P, CHAI M L, et al. Vaginal cell morphological changes in estrus and the best inseminating time on sika deer[J]. Chinese Journal of Veterinary Medicine, 2016, 52(5): 28–31. (in Chinese)
[11] PARDO-CARMONA B, MOYANO M R, FERNÁNDEZ-PALACIOS R, et al. Saliva crystallisation as a means of determining optimal mating time in bitches[J]. J Small Anim Pract, 2010, 51(8): 437–442. DOI: 10.1111/(ISSN)1748-5827
[12] KUBÁTOVÁ A, FEDOROVA T. Saliva crystallization occurs in female bornean orangutans (Pongo pygmaeus):could it be a new option for monitoring of menstrual cycle in captive great apes?[J]. PLoS One, 2016, 11(7): e0159960. DOI: 10.1371/journal.pone.0159960
[13] SAKATANI M, TAKAHASHI M, TAKENOUCHI N. The efficiency of vaginal temperature measurement for detection of estrus in Japanese Black cows[J]. J Reprod Dev, 2016, 62(2): 201–207. DOI: 10.1262/jrd.2015-095
[14] SUTHAR V S, BURFEIND O, PATEL J S, et al. Body temperature around induced estrus in dairy cows[J]. J Dairy Sci, 2011, 94(5): 2368–2373. DOI: 10.3168/jds.2010-3858
[15] FISHER A D, MORTON R, DEMPSEY J M A, et al. Evaluation of a new approach for the estimation of the time of the LH surge in dairy cows using vaginal temperature and electrodeless conductivity measurements[J]. Theriogenology, 2008, 70(7): 1065–1074. DOI: 10.1016/j.theriogenology.2008.06.023
[16] REDDEN K D, KENNEDY A D, INGALLS J R, et al. Detection of estrus by radiotelemetric monitoring of vaginal and ear skin temperature and pedometer measurements of activity[J]. J Dairy Sci, 1993, 76(3): 713–721. DOI: 10.3168/jds.S0022-0302(93)77394-4
[17] MIURA R, YOSHIOKA K, MIYAMOTO T, et al. Estrous detection by monitoring ventral tail base surface temperature using a wearable wireless sensor in cattle[J]. Anim Reprod Sci, 2017, 180: 50–57. DOI: 10.1016/j.anireprosci.2017.03.002
[18] WILLIAMS H, DACKS P A, RANCE N E. An improved method for recording tail skin temperature in the rat reveals changes during the estrous cycle and effects of ovarian steroids[J]. Endocrinology, 2010, 151(11): 5389–5394. DOI: 10.1210/en.2010-0630
[19] PRADO M, ORTEG A, MONIC A, et al. Maintenance energy requirements, postpartum reproduction, and ruminal temperature at parturition and estrus[J]. Proc Natl Acad Sci U S A, 2009, 95(8): 4504–4509.
[20] COOPER-PRADO M J, LONG N M, WRIGHT E C, et al. Relationship of ruminal temperature with parturition and estrus of beef cows[J]. J Anim Sci, 2011, 89(4): 1020–1027. DOI: 10.2527/jas.2010-3434
[21] WRIGHT E C.Effect of ambient temperature on duration of gestation and changes in rumen temperature at parturition and estrus in fall calving beef cows[D].Stephenville, Texas: Tarleton State University, 2009: 419-434.
[22] GARTLAND P, SCHIAVO J, HALL C E, et al. Detection of estrus in dairy cows by electrical measurements of vaginal mucus and by milk progesterone[J]. J Dairy Sci, 1976, 59(5): 982–985. DOI: 10.3168/jds.S0022-0302(76)84307-X
[23] 冯宾, 张颖, 贾爽, 等. 阴道pH对新生小鼠性别的影响[J]. 北京农学院学报, 2015, 30(4): 82–87.
FENG B, ZHANG Y, JIA S, et al. Effect of vagina pH on sex ratio of newborn mouse[J]. Journal of Beijing University of Agriculture, 2015, 30(4): 82–87. (in Chinese)
[24] ŔEZÁÇ P, PÖSCHL M, KŔIVÁNEK I. Effect of probe location on changes in vaginal electrical impedance during the porcine estrous cycle[J]. Theriogenology, 2003, 59(5-6): 1325–1334. DOI: 10.1016/S0093-691X(02)01168-8
[25] KO J C H, EVANS L E, HOPKINS S M. Vaginal conductivity as an indicator for optimum breeding time in the sow after weaning[J]. Theriogenology, 1989, 32(6): 961–968. DOI: 10.1016/0093-691X(89)90505-0
[26] DUSZA L, OPAŁKA P, KAMIŃSKI T, et al. The relationship between electrical resistance of vaginal mucus and plasma hormonal parameters during periestrus in sows[J]. Theriogenology, 1996, 45(8): 1491–1503. DOI: 10.1016/0093-691X(96)00117-3
[27] PANG X S, WANG Z Y, ZHU T G, et al. Concentrations of progesterone and estradiol in peripheral plasma during the estrous cycle and after ovariectomy in Huanghuai goats of high or poor prolificacy[J]. Asian-Aust J Anim Sci, 2010, 23(2): 188–196.
[28] TABATABAEI S, MOGHADAM M A, MAMOUEI M, et al. Hormonal profile of ovarian follicular fluid and blood plasma during different stages of estrous cycle in Holstein cattle[J]. Iran J Appl Anim Sci, 2014, 4(2): 263–268.
[29] CAMPBELL B K, CLINTON M, WEBB R. The role of Anti-Müllerian Hormone (AMH) during follicle development in a monovulatory species (sheep)[J]. Endocrinology, 2012, 153(9): 4533–4543. DOI: 10.1210/en.2012-1158
[30] AZIZ R L A, KHALIL A A Y, ABDEL-WAHAB A, et al. Relationship among circulating anti-Müllerian hormone, insulin like growth factor 1, cadmium and superovulatory response in dairy cows[J]. Theriogenology, 2017, 100: 72–79. DOI: 10.1016/j.theriogenology.2017.06.007
[31] GREIVES T J, MASON A O, SCOTTI M A L, et al. Environmental control of kisspeptin:implications for seasonal reproduction[J]. Endocrinology, 2007, 148(3): 1158–1166. DOI: 10.1210/en.2006-1249
[32] LEE W Y, PARK M H, KIM K W, et al. Identification of lactoferrin and glutamate receptor-interacting protein 1 in bovine cervical mucus:a putative marker for oestrous detection[J]. Reprod Domest Anim, 2017, 52(1): 16–23. DOI: 10.1111/rda.12744
[33] DOLECHECK K A, SILVIA W J, HEERSCHE G Jr, et al. Behavioral and physiological changes around estrus events identified using multiple automated monitoring technologies[J]. J Dairy Sci, 2015, 98(12): 8723–8731. DOI: 10.3168/jds.2015-9645
[34] REITH S, HOY S. Relationship between daily rumination time and estrus of dairy cows[J]. J Dairy Sci, 2012, 95(11): 6416–6420. DOI: 10.3168/jds.2012-5316
[35] DEVRIES T J, BEAUCHEMIN K A, DOHME F, et al. Repeated ruminal acidosis challenges in lactating dairy cows at high and low risk for developing acidosis:feeding, ruminating, and lying behavior[J]. J Dairy Sci, 2009, 92(10): 5067–5078. DOI: 10.3168/jds.2009-2102
[36] PAHL C, HARTUNG E, MAHLKOW-NERGE K, et al. Feeding characteristics and rumination time of dairy cows around estrus[J]. J Dairy Sci, 2015, 98(1): 148–154. DOI: 10.3168/jds.2014-8025
[37] LØVENDAHL P, CHAGUNDA M G G. On the use of physical activity monitoring for estrus detection in dairy cows[J]. J Dairy Sci, 2010, 93(1): 249–259. DOI: 10.3168/jds.2008-1721
[38] JOHNSON J S, SHADE K A. Characterizing body temperature and activity changes at the onset of estrus in replacement gilts[J]. Livest Sci, 2017, 199: 22–24. DOI: 10.1016/j.livsci.2017.03.004
[39] ROELOFS J B, VAN EERDENBURG F J C M, SOEDE N M, et al. Pedometer readings for estrous detection and as predictor for time of ovulation in dairy cattle[J]. Theriogenology, 2005, 64(8): 1690–1703. DOI: 10.1016/j.theriogenology.2005.04.004
[40] 寇红祥, 李蓝祁, 王振玲, 等. 牛发情期活动量与阴道黏液电阻值变化规律的研究[J]. 畜牧兽医学报, 2017, 48(7): 1221–1228.
KOU H X, LI L Q, WANG Z L, et al. Study on the regulations of activity and vaginal electrical resistance of cattle during the estrous cycle[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(7): 1221–1228. (in Chinese)
[41] ALHAMADA M, DEBUS N, LURETTE A, et al. Validation of automated electronic oestrus detection in sheep as an alternative to visual observation[J]. Small Ruminant Res, 2016, 134: 97–104. DOI: 10.1016/j.smallrumres.2015.12.032
[42] PRICE E O, ERHARD H, BORGWARDT R, et al. Measures of libido and their relation to serving capacity in the ram[J]. J Anim Sci, 1992, 70(11): 3376–3380. DOI: 10.2527/1992.70113376x
[43] SIMÕES V G, LYAZRHI F, PICARD-HAGEN N, et al. Variations in the vulvar temperature of sows during proestrus and estrus as determined by infrared thermography and its relation to ovulation[J]. Theriogenology, 2014, 82(8): 1080–1085. DOI: 10.1016/j.theriogenology.2014.07.017
[44] TALUKDER S, KERRISK K L, INGENHOFF L, et al. Infrared technology for estrus detection and as a predictor of time of ovulation in dairy cows in a pasture-based system[J]. Theriogenology, 2014, 81(7): 925–935. DOI: 10.1016/j.theriogenology.2014.01.009
[45] HELLEBRAND H J, BREHME U, BEUCHE H, et al.Application of thermal imaging for cattle management[C]//Proceedings of the 1st European Conference on Precision Livestock Farming.Berlin, Germany, 2003: 761-763.
[46] SCOLARI S C, CLARK S G, KNOX R V, et al. Vulvar skin temperature changes significantly during estrus in swine as determined by digital infrared thermography[J]. J Swine Health Prod, 2011, 19(3): 151–155.
[47] OL$\rm{\breve{G}} $AÇ K T, AKCAY E, ÇIL B, et al. The use of infrared thermography to detect the stages of estrus cycle and ovulation time in anatolian shepherd dogs[J]. J Anim Sci Technol, 2017, 59: 21. DOI: 10.1186/s40781-017-0146-4