畜牧兽医学报  2017, Vol. 48 Issue (9): 1648-1653. DOI: 10.11843/j.issn.0366-6964.2017.09.009    PDF    
抑制素对绵羊颗粒细胞雌激素和孕酮分泌及相关基因表达的影响
李婷, 马爱团, 刘月琴, 高昆, 张继伟, 张英杰     
河北农业大学动物科技学院, 保定 071000
摘要:本试验旨在研究RNA干扰抑制素α亚基(Inhibin α-subunit,INHα)基因和添加抑制素A(InhibinA)对绵羊颗粒细胞雌激素(Estrogen,E2)和孕酮(Progesterone,P)分泌及相关基因表达的影响,以探索抑制素在绵羊颗粒细胞E2和P分泌中的作用。从1.0~1.5岁小尾寒羊的卵泡(3~7 mm)中分离培养颗粒细胞,分为2个处理组:干扰组(脂质体介导法转染颗粒细胞)和InhibinA添加组(200 ng·mL-1)。利用ELISA试剂盒检测E2和P的分泌,荧光定量RT-PCR检测E2和P的分泌相关基因(CYP11、3β-HSDCYP19)的表达量。结果表明,与对照组相比,干扰组siRNA转染颗粒细胞48 h后,INHα基因的抑制率达87%,E2和P的分泌量显著降低(P < 0.05);InhibinA添加组E2和P的分泌水平显著升高(P < 0.05);干扰组3β-HSDCYP19的mRNA表达量显著降低(P < 0.05),CYP11的表达量显著升高(P < 0.05);InhibinA添加组CYP19、CYP11和3β-HSD的mRNA表达水平均显著升高(P < 0.05)。综上表明,抑制素在绵羊颗粒细胞中起关键调控作用,通过调节绵羊颗粒细胞类固醇激素的分泌参与调控卵泡发育和排卵过程。
关键词抑制素    雌激素    孕酮    绵羊    颗粒细胞    基因表达    
Effects of Inhibin on the Secretion of Estrogen, Progesterone and Expressions of Related Genes in Sheep Granulosa Cells
LI Ting, MA Ai-tuan, LIU Yue-qin, GAO Kun, ZHANG Ji-wei, ZHANG Ying-jie     
College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
Abstract: The aim of this study was to investigate the effects of silencing the inhibin α-subunit (INHα) gene or treatment with inhibinA on the secretion of estrogen (E2), progesterone (P) and expressions of related genes in sheep granulosa cells (GCs), explore the role of inhibin in the secretion of E2 and P. GCs were isolated from antral follicles (3-7 mm) obtained from the ovaries of small-tailed Han sheep (1.0-1.5 years old). GCs were transfected with siRNA or treated with inhibinA (200 ng·mL-1). The concentrations of E2 and P were tested by ELISA. The mRNA levels of related-genes (CYP11, 3β-HSD and CYP19) were analyzed by quantitative real-time PCR (qRT-PCR). The results showed that siRNA was transfected into GCs at 48 h and the silencing efficiency of INHα was 87%. Knockdown of INHα by siRNA decreased the concentrations of E2 and P at 48 h compared with the control (P < 0.05). Secretion of E2 and P were increased in the group treated with inhibinA (P < 0.05). Knockdown of INHα by siRNA decreased the mRNA expressions of 3β-HSD and CYP19, and increased the mRNA expression of CYP11 (P < 0.05). The mRNA expressions of 3β-HSD, CYP11 and CYP19 were increased in the group treated with inhibinA (P < 0.05). These results indicated that inhibin was a key regulator and involved in the process of follicular growth and ovulation by regulating the secretion of steroid hormone in sheep GCs.
Key words: inhibin     estrogen     progesterone     sheep     granulosa cells     gene expression    

卵泡颗粒细胞的生长和凋亡,对卵泡的发育起着重要作用。卵泡发育是受颗粒细胞分泌的各种因子调节的复杂生物过程,尤其是类固醇激素如雌激素(E2) 和孕酮(P)[1-2]。类固醇激素的合成受一系列酶的控制,其中CYP19、CYP11和3β-HSD是其合成通路的关键酶[3-4]。抑制素是卵巢颗粒细胞中类固醇激素合成的重要调节因子[5-6],它可以通过调节类固醇激素合成相关基因(CYP11、3β-HSDCYP19) 的表达或活性调控类固醇激素的合成,参与调控卵泡的生长发育与排卵,进而调节动物的繁殖性能[7-8]

抑制素主要是卵泡颗粒细胞分泌的,它是由α、β两个不同的亚基组成,其中β亚基有A、B两种形式,α和βA亚基构成抑制素A(InhibinA),α和βB形成抑制素B(InhibinB)。抑制素的结合位点和受体位于垂体、卵泡膜细胞和卵泡颗粒细胞中[9-11],它可以通过内分泌和局部作用的方式调节卵泡发育[12-16]。许多研究表明,抑制素通过内分泌作用调节E2的分泌,从而调控垂体FSH的分泌[17-21]。另外,抑制素可通过局部调节作用增强LH刺激膜细胞雄激素的合成效应,促进雄激素的合成[22-23]。但是,颗粒细胞来源的抑制素对E2和P局部调节的影响结果还存在争议。研究发现,添加抑制素抗体促进牛和猪颗粒细胞分泌E2[24-26]。但是B.K.Campbell等[27]研究表明,抑制素的添加促进绵羊颗粒细胞产生E2,C.D.Smyth等[22]在大鼠卵泡中发现,免疫中和内源性的抑制素导致E2分泌的降低和P的增加,当抗体处理的卵泡中补充外源性抑制素时,E2分泌得到恢复,并且P减少。抑制素通过改变CYP11和CYP19的表达影响E2和P的分泌[25, 28]。另外,抑制素对灵长类动物颗粒细胞基础水平和促性腺激素诱导的E2的分泌没有影响[29]。抑制素对E2和P有重要的调节作用,但针对绵羊颗粒细胞的研究结果还比较少,且颗粒细胞来源的抑制素对E2和P局部作用的调控结果还不清楚。

本实验室已构建了靶向抑制素α亚基(Inhibin α-subunit, INHα)基因的siRNA,干扰效率达85%以上,并通过RNA干扰INHα的表达后对绵羊颗粒细胞的增殖和凋亡进行了大量研究,但关于RNA干扰INHα的表达及添加InhibinA后,对绵羊颗粒细胞E2和P的分泌及相关基因的变化还需要进一步研究。本研究以原代绵羊颗粒细胞为模型,通过siRNA干扰内源性INHα基因的表达和添加外源InhibinA两种处理,研究抑制素对绵羊颗粒细胞E2和P的分泌及相关基因(CYP11、3β-HSDCYP19) 表达的影响,为研究卵泡抑制素对绵羊卵泡发育的局部调节作用奠定基础。

1 材料与方法 1.1 试验材料

从唐县屠宰场采集1.0~1.5岁小尾寒羊的卵巢,立即放入含双抗的37 ℃生理盐水的保温瓶中,并在3 h内运回实验室。

1.2 方法 1.2.1 绵羊卵巢颗粒细胞的分离与培养

根据J.Y.Peng等[30]的颗粒细胞分离方法,从绵羊卵泡分离并收集颗粒细胞,加入含10% FBS(Gibco)和1%青链霉素混合液的DMEM/F12(Gibco)培养液重悬细胞。调整细胞密度,于37 ℃、5% CO2条件下培养24 h后, 更换为含有1%的青链霉素混合液(Gibco)、0.2% BSA(Sigma)、1%的ITS(胰岛素-转铁因子-硒补充剂,Gibco)和0.1 μmol·L-1雄烯二酮(美伦)的DMEM/F-12培养液培养12 h后,添加InhibinA(200 ng·mL-1,ProSpec)对细胞进行刺激,并以未处理的细胞为空白对照(Control),每组设3个重复孔。

1.2.2 siRNA的设计合成和转染

在GenBank上搜索绵羊INHα基因mRNA序列(NM_001308579.1),设计合成针对INHα基因的siRNA干扰序列(siINHα)和阴性对照(siNC),采用转染试剂LipofectamineTM RNAiMAX(Invitrogen),按说明书转染siINHα和siNC至绵羊颗粒细胞,每组设3个重复孔。处理48 h后, 提取总RNA进行检测。

1.2.3 雌激素和孕酮的测定

RNA干扰组和InhibinA添加组分别处理细胞48 h后,收集培养液上清。采用P和E2 ELISA试剂盒(北京华英生物技术研究所)检测细胞培养液中E2(灵敏度 < 4 pg·mL-1,批内变异系数 < 15%,批间变异系数 < 15%)和P(灵敏度 < 0.1 ng·mL-1,批内变异系数 < 15%,批间变异系数 < 15%)的浓度,经显色后在酶标仪测定吸光值(OD值),通过拟合浓度—吸光度曲线,计算出待测细胞培养液中E2和P的含量。

1.2.4 qRT-PCR检测雌激素和孕酮分泌相关基因mRNA的表达

干扰组和InhibinA添加组处理细胞48 h后,Trizol(Invitrogen)提取细胞总RNA,利用反转录试剂盒(TaKaRa),反转录为cDNA。使用荧光定量PCR仪(ABI Step One PlusTM)进行检测(SybrGreen qPCR mastermix试剂购自DBI)。以GAPDH基因为内参,采用2-△△CT的方法计算各检测基因的相对表达量。qRT-PCR检测目的基因INHα、E2和P分泌相关基因(CYP19、CYP11和3β-HSD)的相对表达量。引物序列见表 1

表 1 引物序列 Table 1 Primer sequences
1.2.5 数据分析

采用SPSS 19.0的t检验对数据进行分析。试验数据以“平均值±标准差”表示。P<0.05表示差异显著。

2 结果 2.1 siRNA的干扰效率

siRNA转染颗粒细胞48 h后,与阴性对照相比,颗粒细胞INHα mRNA的水平显著降低(P<0.05),抑制率为87%(表 2)。

表 2 转染后绵羊颗粒细胞INHα基因mRNA的相对表达水平 Table 2 The mRNA expression of INHα in sheep granulosa cells after transfection
2.2 siRNA干扰INHα基因对绵羊颗粒细胞雌激素和孕酮分泌的影响

干扰组siRNA转染颗粒细胞48 h后,测定培养液中E2和P分泌量的结果见表 3。在转染48 h时,siRNA干扰组颗粒细胞E2和P的分泌量均显著低于阴性对照组(P < 0.05)。

表 3 干扰INHα对颗粒细胞中E2和P分泌的影响 Table 3 The effects of silencing INHα on the secretion of E2 (pg·mL-1) and P (ng·mL-1) in granulosa cells
2.3 抑制素A的添加对绵羊颗粒细胞雌激素和孕酮分泌的影响

InhibinA处理颗粒细胞48 h后,E2和P的分泌量均显著高于空白对照组(P < 0.05)(表 4)。

表 4 InhibinA对颗粒细胞中E2和P分泌的影响 Table 4 The effects of inhibinA on the secretion of E2 and P in granulosa cells
2.4 抑制素对绵羊颗粒细胞雌激素和孕酮分泌相关基因表达的影响

干扰组E2和P分泌相关基因的相对表达量结果见图 1A。siRNA转染后,干扰组中与E2分泌相关的芳香化酶CYP19基因相对表达量受到抑制,与阴性对照组相比差异显著(P < 0.05);与P分泌相关的3β-HSD基因相对表达量显著降低(P < 0.05),而CYP11的表达量显著升高(P < 0.05)。InhibinA添加组E2和P分泌相关基因的相对表达量结果见图 1B。与空白对照组相比,CYP19、CYP11和3β-HSD基因相对表达量均显著升高(P < 0.05)。

图 1 干扰INH α(A)和InhibinA(B)处理后绵羊颗粒细胞CYP19、CYP11和3β-HSD mRNA的表达 Figure 1 Effect of treatment with silencing INHα gene (A)and inhibinA (B) on the mRNA expressions of CYP19, CYP11 and 3β-HSD in sheep granulosa cells
3 讨论 3.1 抑制素对颗粒细胞雌激素和孕酮分泌的影响

卵泡发育是受颗粒细胞分泌的各种因子调节的复杂生物过程,尤其受E2和P的调节。研究表明,抑制素可以调节E2和P的分泌[7, 31]。F.J.Chen等[32]研究发现,干扰鹅颗粒细胞INHα基因的表达后,E2的浓度降低。L.Y.Geng等[33]超表达INHα 48 h后发现,抑制素促进E2分泌,抑制P分泌;而96 h后,E2分泌受到抑制,P分泌量不变。可能是因为超表达的INHα片段能够作为抑制素的对抗物,模拟抑制素亚基对颗粒细胞的作用,对抗颗粒细胞自身分泌的抑制素对E2分泌的负反馈作用,促进颗粒细胞分泌E2。另外,抑制素抗体的添加,同样抑制FSH诱导的绵羊颗粒细胞和未成熟大鼠的整个卵泡中产生E2[22, 27],说明抑制素对E2有促进作用。本研究得出,干扰绵羊颗粒细胞中INHα基因的表达,抑制了E2和P的分泌,添加InhibinA处理绵羊颗粒细胞,促进了E2和P的分泌。但有研究发现,转基因小鼠过表达INHα,使得小鼠的排卵率降低,E2分泌减少[34-35]。在猪和牛颗粒细胞中添加抑制素抗体,阻断了猪和牛颗粒细胞产生的抑制素对E2的抑制效果,促进E2的分泌,说明抑制素对颗粒细胞产生的E2具有负反馈效应[24-26]。还有研究表明,抑制素对灵长类动物和大鼠颗粒细胞基础水平和FSH诱导的E2的分泌没有影响[29, 36]。以上研究结果不一致的原因,可能是由于物种、处理方法、培养基中添加的成分以及培养的时间不同造成的,也可能与颗粒细胞的分化阶段不同有关。

3.2 抑制素对颗粒细胞雌激素和孕酮分泌相关基因表达的影响

E2和P在动物的生殖、发育、生长等方面起着重要作用,它的合成主要受CYP19、CYP11和3β-HSD的控制。研究表明,芳香化酶CYP19是雄激素向E2转化的关键酶,P的产生与3β-HSD和CYP11的表达有关[3]。L.P. Cai等[25]研究表明,添加INHα抗体,通过上调CYP19促进猪颗粒细胞E2的分泌。C.L.Lu等[28]研究发现InhibinA本身对大鼠颗粒细胞的CYP19和CYP11 mRNA基础水平没有影响,但抑制了FSH诱导的类固醇生成相关基因CYP19CYP11 mRNA的表达,从而降低了E2和P的合成,这种抑制作用发生在cAMP通路的上游。本研究表明,干扰绵羊颗粒细胞中INHα基因的表达,显著下调CYP19和3β-HSD mRNA的表达,抑制E2和P的分泌;InhibinA处理颗粒细胞,显著上调CYP19、CYP11和3β-HSD的表达,促进E2和P的分泌,与以上研究结果一致。但干扰颗粒细胞中INHα基因的表达,CYP11 mRNA的表达上调与P分泌的变化不一致。M.Sahmi等[37]研究表明,3β-HSD对P的分泌起决定性作用,而CYP11的表达与P的分泌无关。研究表明,添加INHα抗体,免疫中和内源性抑制素的生物学活性,促进猪颗粒细胞分泌E2,但CYP19的表达上调不显著,认为E2的合成和分泌可能还涉及CYP19以外的因子[24]。抑制素对E2和P的调控作用涉及多因子参与,其调控机制比较复杂,造成以上基因表达差异的原因还需进一步的研究。

4 结论

RNA干扰INHα基因的表达后,抑制了绵羊颗粒细胞E2和P的分泌,显著下调CYP19和3β-HSD mRNA的表达,上调CYP11 mRNA的表达;InhibinA的添加,促进了绵羊颗粒细胞E2和P的分泌,显著上调CYP19、CYP11和3β-HSD mRNA的表达。抑制素通过改变类固醇生成相关基因的表达,进而调控绵羊颗粒细胞类固醇激素的分泌。

参考文献
[1] KNIGHT P G, SATCHELL L, GLISTER C. Intra-ovarian roles of activins and inhibins[J]. Mol Cell Endocrinol, 2012, 359(1-2): 53–65. DOI: 10.1016/j.mce.2011.04.024
[2] RIAZ H, DONG P, SHAHZAD M, et al. Constitutive and follicle-stimulating hormone-induced action of somatostatin receptor-2 on regulation of apoptosis and steroidogenesis in bovine granulosa cells[J]. J Steroid Biochem Mol Biol, 2014, 141: 150–159. DOI: 10.1016/j.jsbmb.2014.02.001
[3] LAVOIE H A, KING S R. Transcriptional regulation of steroidogenic genes:STARD1, CYP11A1 and HSD3B[J]. Exp Biol Med (Maywood), 2009, 234(8): 880–907. DOI: 10.3181/0903-MR-97
[4] STOCCO D M, CLARK B J. Regulation of the acute production of steroids in steroidogenic cells[J]. Endocr Rev, 1996, 17(3): 221–244.
[5] KNIGHT P G, GLISTER C. Potential local regulatory functions of inhibins, activins and follistatin in the ovary[J]. Reproduction, 2001, 121(4): 503–512. DOI: 10.1530/rep.0.1210503
[6] HILLIER S G. Regulatory functions for inhibin and activin in human ovaries[J]. J Endocrinol, 1991, 131(2): 171–175. DOI: 10.1677/joe.0.1310171
[7] HILLIER S G, TSONIS C G, WICKINGS E J, et al. Inhibition of FSH-stimulated granulosa cell function by a synthetic fragment of the porcine inhibin alpha-subunit:evidence for involvement of GnRH receptors[J]. J Endocrinol, 1987, 113(2): R3–R5. DOI: 10.1677/joe.0.113R003
[8] SCHNEYER A L, SLUSS P M, WHITCOMB R W, et al. Precursors of α-inhibin modulate follicle-stimulating hormone receptor binding and biological activity[J]. Endocrinology, 1991, 129(4): 1987–1999. DOI: 10.1210/endo-129-4-1987
[9] LEWIS K A, GRAY P C, BLOUNT A L, et al. Betaglycan binds inhibin and can mediate functional antagonism of activin signalling[J]. Nature, 2000, 404(6776): 411–414. DOI: 10.1038/35006129
[10] HERTAN R, FARNWORTH P G, FITZSIMMONS K L, et al. Identification of high affinity binding sites for inhibin on ovine pituitary cells in culture[J]. Endocrinology, 1999, 140(1): 6–12. DOI: 10.1210/endo.140.1.6440
[11] MACCONELL L A, LEAL A M O, VALE W W. The distribution of betaglycan protein and mRNA in rat brain, pituitary, and gonads:implications for a role for betaglycan in inhibin-mediated reproductive functions[J]. Endocrinology, 2002, 143(3): 1066–1075. DOI: 10.1210/endo.143.3.8707
[12] HILLIER S G, MIRÓ F. Inhibin, activin, and follistatin. Potential roles in ovarian physiology[J]. Ann N Y Acad Sci, 1993, 687: 29–38. DOI: 10.1111/nyas.1993.687.issue-1
[13] VALE W, HSUEH A, RIVIER C, et al. The Inhibin/Activin family of hormones and growth factors[M]//SPORN M B, ROBERTS A B. Peptide Growth Factors and Their Receptors Ⅱ. Berlin Heidelberg:Springer, 1990:211-248.
[14] FINDLAY J K, DRUMMOND A E, DYSON M, et al. Production and actions of inhibin and activin during folliculogenesis in the rat[J]. Mol Cell Endocrinol, 2001, 180(1-2): 139–144. DOI: 10.1016/S0303-7207(01)00521-4
[15] BILEZIKJIAN L M, BLOUNT A L, LEAL A M O, et al. Autocrine/paracrine regulation of pituitary function by activin, inhibin and follistatin[J]. Mol Cell Endocrinol, 2004, 225(1-2): 29–36. DOI: 10.1016/j.mce.2004.02.010
[16] KADARIYA I, WANG J X, REHMAN Z U, et al. RNAi-mediated knockdown of inhibin α subunit increased apoptosis in granulosa cells and decreased fertility in mice[J]. J Steroid Biochem Mol Biol, 2015, 152: 161–170. DOI: 10.1016/j.jsbmb.2015.05.006
[17] DAN X G, LIU X R, HAN Y G, et al. Effect of the novel DNA vaccine fusing inhibin α (1-32) and the RF-amide related peptide-3 genes on immune response, hormone levels and fertility in Tan sheep[J]. Anim Reprod Sci, 2016, 164: 105–110. DOI: 10.1016/j.anireprosci.2015.11.018
[18] RAMASWAMY S, POHL C R, MCNEILLY A S, et al. The time course of follicle-stimulating hormone suppression by recombinant human inhibin A in the adult male rhesus monkey (Macaca mulatta)[J]. Endocrinology, 1998, 139(8): 3409–3415. DOI: 10.1210/endo.139.8.6125
[19] LIU Y P, MAO X B, WEI Y M, et al. Studies on enhancing embryo quantity and quality by immunization against inhibin in repeatedly superovulated Holstein heifers and the associated endocrine mechanisms[J]. Anim Reprod Sci, 2013, 142(1-2): 10–18. DOI: 10.1016/j.anireprosci.2013.08.005
[20] BAHARELDIN-ALI A, QIN G S, GUO R H, et al. Endocrine and ovarian responses in water buffalo cows immunized against inhibin and subjected to the Ovsynch protocol[J]. J Integr Agric, 2015, 14(9): 1827–1837. DOI: 10.1016/S2095-3119(15)61034-6
[21] LIU Q, REHMAN Z U, LIU J J, et al. Nasal immunization with inhibin DNA vaccine delivered by attenuated Salmonella choleraesuis for improving ovarian responses and fertility in cross-bred buffaloes[J]. Rerod Domest Anim, 2017, 52(2): 189–194. DOI: 10.1111/rda.2017.52.issue-2
[22] SMYTH C D, GOSDEN R G, MCNEILLY A S, et al. Effect of inhibin immunoneutralization on steroidogenesis in rat ovarian follicles in vitro[J]. J Endocrinol, 1994, 140(3): 437–443. DOI: 10.1677/joe.0.1400437
[23] YOUNG J M, MCNEILLY A S. Inhibin removes the inhibitory effects of activin on steroid enzyme expression and androgen production by normal ovarian thecal cells[J]. J Mol Endocrinol, 2012, 48(1): 49–60. DOI: 10.1530/JME-11-0134
[24] LEI M M, CAI L P, LI H, et al. Transcriptome sequencing analysis of porcine granulosa cells treated with an anti-inhibin antibody[J]. Reprod Biol, 2017, 17(1): 79–88. DOI: 10.1016/j.repbio.2017.01.002
[25] CAI L P, SUN A D, LI H, et al. Molecular mechanisms of enhancing porcine granulosa cell proliferation and function by treatment in vitro with anti-inhibin alpha subunit antibody[J]. Reprod Biol Endocrinol, 2015, 13: 1–10. DOI: 10.1186/1477-7827-13-1
[26] JIMENEZ-KRASSEL F, WINN M E, BURNS D, et al. Evidence for a negative intrafollicular role for inhibin in regulation of estradiol production by granulosa cells[J]. Endocrinology, 2003, 144(5): 1876–1886. DOI: 10.1210/en.2002-221077
[27] CAMPBELL B K, BAIRD D T. Inhibin A is a follicle stimulating hormone-responsive marker of granulosa cell differentiation, which has both autocrine and paracrine actions in sheep[J]. J Endocrinol, 2001, 169(2): 333–345. DOI: 10.1677/joe.0.1690333
[28] LU C L, YANG W, CHEN M, et al. Inhibin A inhibits follicle-stimulating hormone (FSH) action by suppressing its receptor expression in cultured rat granulosa cells[J]. Mol Cell Endocrinol, 2009, 298(1-2): 48–56. DOI: 10.1016/j.mce.2008.09.039
[29] HILLIER S G, MIRÓ F. Local regulation of primate granulosa cell aromatase activity[J]. J Steroid Biochem Mol Biol, 1993, 44(4-6): 435–439. DOI: 10.1016/0960-0760(93)90247-T
[30] PENG J Y, XIN H Y, HAN P, et al. Expression and regulative function of tissue inhibitor of metalloproteinase 3 in the goat ovary and its role in cultured granulosa cells[J]. Mol Cell Endocrinol, 2015, 412: 104–115. DOI: 10.1016/j.mce.2015.06.001
[31] MIRÓ F, HILLIER S G. Relative effects of activin and inhibin on steroid hormone synthesis in primate granulosa cells[J]. J Clin Endocrinol Metab, 1992, 75(6): 1556–1561.
[32] CHEN F J, JIANG X P, CHEN X P, et al. Effects of downregulation of inhibin α gene expression on apoptosis and proliferation of goose granulosa cells[J]. J Genet Genomics, 2007, 34(12): 1106–1113. DOI: 10.1016/S1673-8527(07)60126-X
[33] GENG L Y, FANG M, YI J M, et al. Effect of overexpression of inhibin α (1-32) fragment on bovine granulosa cell proliferation, apoptosis, steroidogenesis, and development of co-cultured oocytes[J]. Theriogenology, 2008, 70(1): 35–43. DOI: 10.1016/j.theriogenology.2008.02.013
[34] CHO B N, MCMULLEN M L, PEI L, et al. Reproductive deficiencies in transgenic mice expressing the rat inhibin α-subunit gene[J]. Endocrinology, 2001, 142(11): 4994–5004. DOI: 10.1210/endo.142.11.8481
[35] MCMULLEN M L, CHO B N, YATES C J, et al. Gonadal pathologies in transgenic mice expressing the rat inhibin α-subunit[J]. Endocrinology, 2001, 142(11): 5005–5014. DOI: 10.1210/endo.142.11.8472
[36] HUTCHINSON L A, FINDLAY J K, DE VOS F L, et al. Effects of bovine inhibin, transforming growth factor-β and bovine Activin-A on granulosa cell differentiation[J]. Biochem Biophys Res Commun, 1987, 146(3): 1405–1412. DOI: 10.1016/0006-291X(87)90806-0
[37] SAHMI M, NICOLA E S, SILVA J M, et al. Expression of 17β-and 3β-hydroxysteroid dehydrogenases and steroidogenic acute regulatory protein in non-luteinizing bovine granulosa cells in vitro[J]. Mol Cell Endocrinol, 2004, 223(1-2): 43–54. DOI: 10.1016/j.mce.2004.05.010