畜牧兽医学报  2017, Vol. 48 Issue (8): 1459-1467. DOI: 10.11843/j.issn.0366-6964.2017.08.010    PDF    
短期或长期饲喂高水平豌豆纤维对猪盲肠微生物群落结构和代谢产物的影响
罗玉衡, 陈洪, 余冰, 何军, 黄志清, 毛湘冰, 郑萍, 虞洁, 罗钧秋, 陈代文     
四川农业大学动物营养研究所, 动物抗病营养教育部、农业部重点实验室, 成都 611130
摘要:旨在探讨短期或长期饲喂高水平豌豆纤维(Pea fiber,PF)对猪盲肠细菌群落结构和主要代谢产物的影响。选取50头初始体重为(7.2±0.5)kg的28日龄健康断奶杜洛克×长白×大约克仔猪,按体重无差异原则随机分为2组,每组5个圈,每圈5头仔猪。处理组猪按断奶期(试验开始至断奶后30 d)、生长期(断奶后30至90 d)和育肥期(断奶后90至160 d)3个不同生理阶段猪对日粮纤维的耐受量,分别饲喂含10%、20%、30% PF的饲粮。对照组猪饲喂基础饲粮。在第一阶段(仔猪)和试验结束时(育肥猪)屠宰,采集盲肠食糜。以454高通量测序结合real-time PCR方法检测微生物群落结构。气相色谱法检测盲肠食糜中挥发性脂肪酸含量。结果表明:1)日粮中长期或短期饲喂高水平PF对猪ADFI和ADG均无显著影响(P>0.05)。2)长期饲喂PF显著增加猪盲肠中总挥发性脂肪酸含量,显著降低丙酸比例(P < 0.05);3)高通量测序分析表明,与对照组相比,短期饲喂PF的仔猪盲肠中Firmicutes门比例下降5.6%,Proteobacteria门比例增加4.3%;长期饲喂PF的肥育猪盲肠中Bacteroidetes门比例增加4.8%,Firmicutes门比例下降6.8%,采食PF后猪盲肠中存在独有优势菌属。4)Real-time PCR结果进一步证实,与对照组相比,短期饲喂PF可显著增加仔猪盲肠中总细菌、Bacteroides-Prevotella-Porphyromonas(BPP)、EnterococcusClostridium cluster Ⅳ的拷贝数(P < 0.05),极显著增加BacteroidetesLactobacillusDesulfovibrio desulfuricans数量(P < 0.01),极显著降低Firmicutes数量(P < 0.01);长期饲喂PF可极显著增加肥育猪盲肠中D.desulfuricans数量(P≤0.01),显著降低总细菌、BPP、Helicobacter-Flexispira-Wollinella(HFW)数量(P < 0.05),极显著降低EnterococcusStreptococcusClostridium cluster Ⅰ数量(P≤0.01)。因此,猪后肠细菌群落(尤其是氢营养菌)可对日粮中高水平的PF做出迅速响应,短链脂肪酸比例的变化暗示这种菌群结构的改变与后肠微生物发酵方式的改变有关。日粮中添加高水平PF虽然可降低盲肠中条件致病菌(如Streptococcus)并提高有益菌(如Lactobacillus)的数量,但很可能不利于盲肠微生物发酵产生丁酸。
关键词豌豆纤维        盲肠    微生物群落结构    代谢产物    
Short-term or Long-term Intake of High-level Pea Fiber Specifically Affects the Bacterial Community and Metabolites in the Cecum of Pigs
LUO Yu-heng, CHEN Hong, YU Bing, HE Jun, HUANG Zhi-qing, MAO Xiang-bing, ZHENG Ping, YU Jie, LUO Jun-qiu, CHEN Dai-wen     
Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education and Agriculture, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
Abstract: This study was conducted to investigate the effect of short-term or long-term feeding of high-level pea fiber (PF) on the bacterial community and metabolites in the cecum of pigs. Fifty 28 days of age healthy weaned Duroc×Landrace×Yorkshire piglets with body weight of ((7.2±0.5) kg) were selected and randomly allocated in 2 groups according to the principle of no difference in body weight in each group. There were 5 replicates (5 piglets per replicate) in each group. Pigs in the control group were given basal diets. The pigs in experimental groups were fed 10%, 20% or 30% PF diets for the post-weaning period (from experiment beginning to 30 d post-weaning) growing period (30-90 d post-weaning) and finishing period (90-160 d post-weaning), respectively. At the end of the first and the last periods, one pig from each replicate in each group was sacrificed and the cecal digesta was collected immediately. The bacterial community and the numbers of certain bacterial group were detected with 454 pyrosequencing and real-time PCR. The concentrations of volatile fatty acids in the cecal digesta were measured using gas chromatography. The results showed as follows:1) Short-term or long-term intake of high-level PF had no significant effect on the ADFI and ADG of the pigs (P>0.05). 2) The long-term feeding of PF significantly increased the concentration of total volatile fatty acids and decreased the ratio of propionate in cecal digesta of pigs(P < 0.05). 3) According to the result of pyrosequencing, compared with control group, the ratio of phylum Firmicutes in cecum of piglets with short-term feeding of PF was reduced by 5.6%, while the ratio of phylum Proteobacteria was increased by 4.3%. In cecum of pigs with long-term feeding of PF, the ratio of phylum Bacteroidetes was increased by 4.8%, and the ratio of phylum Firmicutes was decreased by 6.8%. Unique bacterial species were found in cecum of pigs fed with PF supplemented diet. 4) Real-time PCR analysis confirmed that, compared with control group, short-term feed of PF significantly increased the copies of total bacteria, Bacteroides-Prevotella-Porphyromonas(BPP), Enterococcus and Clostridium cluster Ⅳ (P < 0.05), and the copies of Bacteroidetes, Lactobacillus and Desulfovibrio desulfuricans (P < 0.01), while the copies of Firmicutes was significantly decreased (P < 0.01) in cecum of piglets. Long-term feeding of PF significantly increased the copies of D. desulfuricans (P ≤ 0.01), while decreased the copies of total bacteria, BPP, Helicobacter-Flexispira-Wollinella(HFW) (P < 0.05), as well as the copies of Enterococcus, Streptococcus and Clostridium cluster Ⅰ (P ≤ 0.01) in cecum of pigs. Therefore, bacteria (especially hydrogenotrophic bacteria) in hindgut of pigs can rapidly response to the high-level PF in the diet. The change of SCFAs proportion indicate that this variation of bacterial community may be involved in the altered microbial fermentation in the hindgut. Although the high level of dietary PF may reduce the abundance of some conditional pathogens such as Streptococcus and increase the abundance of some probiotics such as Lactobacillus, it may not be beneficial to the butyrate production in cecum of pigs.
Key words: pea fiber     pig     cecum     microbial community     metabolites    

单胃动物消化道微生物基因组包含的基因数量大约是机体本身基因数量的100倍[1]。由于消化道微生物数量庞大,功能复杂,因此被视为动物体内的一个“移动器官”,介导或影响宿主营养物质代谢和免疫等生理过程[2]。肠道微生物区系受到多种因素的影响,如日粮、年龄、抗生素,或病原菌感染等[3]。其中,日粮被认为是影响动物肠道菌群的最重要因素之一。日粮组分(如纤维、淀粉等)含量和类型的改变均可迅速导致肠道菌群结构的变化。

日粮纤维的益生作用与其类型、结构、溶解性和可发酵性密切相关[4]。豌豆纤维(Pea fiber,PF)是人类食品中的主要膳食纤维源之一,已被证实可通过调节血糖应答、脂质代谢和肠道蠕动频率等方式来改善机体健康[5]。目前,关于PF与人和动物后肠微生物群落结构的研究十分有限。我们之前以断奶仔猪和生长肥育猪为模型的研究表明,短期或长期摄入高水平PF可增加仔猪结肠黏膜中与肠道屏障相关的基因和蛋白表达,提高分泌型免疫球蛋白A含量和结肠食糜中益生菌(如Lactobacillus)的含量[6-7]。但PF究竟对动物后肠整体微生物区系存在何种影响尚属未知。

除结肠外,单胃动物盲肠中也存在大量微生物群体,它们对宿主营养物质代谢和肠道健康有极大影响。在单胃动物“后肠营养”中,盲肠微生物的作用不可忽视。本研究以杜洛克×长白×大约克猪为对象,结合高通量测序方法和实时荧光定量PCR技术,探讨了短期及长期饲喂高水平PF对猪盲肠细菌群落结构和主要代谢产物的影响。研究结果将为不同类型日粮纤维在动物生产中的合理应用提供科学依据。

1 材料与方法 1.1 动物试验和样品采集

选择50头初始体重为(7.2±0.5) kg的28日龄健康断奶杜洛克×长白×大约克仔猪,按体重无差异原则随机分为2组,每组5个圈,每圈5头仔猪。处理组猪按断奶期(试验开始至断奶后30 d)、生长期(断奶后30~90 d)和育肥期(断奶后90~160 d)3个不同生理阶段猪对日粮纤维的耐受量,分别饲喂含10%、20%、30% PF的饲粮。试验使用的PF购自山东健源食品有限公司。经测定,PF原料中含粗蛋白9.3%,粗纤维21.1%,中性洗涤纤维48.2%,酸性洗涤纤维30.1%,纤维素22.9%,半纤维素18.1%,木质素0.08%。饲粮参照NRC(1998) 标准配制。各阶段对照组和处理组饲粮营养水平保持一致(各阶段基础饲粮配方见表 1)。试猪自由采食和饮水。在断奶后30 d(仔猪)和试验结束时(育肥猪),每圈随机选择1头猪进行屠宰,无菌采集每头猪盲肠食糜,-80 ℃保存备用。仔猪样品以PC和PP分别表示对照组和处理组;生长猪样品以GC和GP分别表示对照组和处理组;肥育猪样品以FC和FP分别表示对照组和处理组。

表 1 各阶段日粮组成和营养水平(风干基础) Table 1 Composition and nutrient levels of diets (air dry basis) for each experimental period
1.2 挥发性脂肪酸(Volatile fatty acids, VFAs)浓度测定

取1 g盲肠食糜样品加入2 mL纯水。混匀后12 000 g 4 ℃离心10 min。取1 mL混合物加入0.2 mL偏磷酸混匀,4 ℃ 12 000 g离心30 min。气相色谱(Varian CP-3800,Agilent Technologies,PaloAlto,加拿大)检测各VFA含量。氢火焰离子化检测器温度设定为100和150 ℃。高纯度N2流速为1.8 mL·min-1。VFA检出限为0.1 mmol·L-1

1.3 盲肠食糜DNA提取和PCR扩增

食糜DNA提取参照文献[3]。采用Nanodrop 2000(Thermo Scientific,美国)检测DNA浓度和纯度。将同一处理5头猪的基因组DNA样本调整至相同浓度,等量混合作为一个样品,采用细菌通用16S rRNA(8F 5′-AGAGTTTGATCCTGGCTCAG-3′和533R 5′-TTACCGCGGCTGCTGGCAC-3′)引物进行PCR扩增,采用454/Roche GS-FLX Titanium平台测序。MOTHUR软件进行序列过滤,去除嵌合体,进行多样性分析。参考数据库为SILVA 108。

1.4 实时荧光定量PCR分析

食糜样本中的总细菌[8]Firmicutes[8]Bacteroides-Prevotella-Porphyromonas (BPP)、Enterococcus[9]Helicobacter-Flexispira-Wollinella (HFW)[10]Bacteroidetes[8]Clostridium cluster Ⅰ和Ⅳ[11]Lactobacillus[12]Streptococcus[13]Enterobacteriaceae[14]Desulfovibrio desulfuricans[10]的拷贝数采用BioRad CFX-96实时荧光定量PCR系统(Bio-Rad, 美国)分析。PCR反应体系为25 μL:12.5 μL IQ SYBR Green Supermix (Bio-Rad, 美国),上下游引物各0.2 μmol·L-1,5 μL模板DNA。以梯度稀释后的各纯化PCR产物做标准曲线计算拷贝数。

1.5 数据统计分析

采用SPSS 16.0软件的One-Way ANOVA模块分析2组样品的VFAs浓度和细菌拷贝数差异。以P < 0.05为差异显著,P < 0.01为差异极显著,0.05 < P < 0.1为差异具有显著趋势。

2 结果 2.1 对照组与处理组猪盲肠食糜VFAs浓度变化

PC组与PP组仔猪平均日采食量(ADFI)和平均日增重(ADG)均无显著差异(P>0.05,数据未显示);FC与FP组肥育猪ADFI和ADG也无显著差异(P>0.05,数据未显示)。与PC组相比,PP组仔猪盲肠食糜中的乙酸、丙酸、丁酸浓度和比例,以及总VFA浓度均无显著变化(P>0.05)。与FC相比,FP组肥育猪盲肠食糜中的总VFA浓度显著升高(P < 0.05),丙酸比例显著下降(P < 0.05),其他VFA浓度及比例无显著变化(P>0.05)(表 2)。

表 2 盲肠食糜VFAs浓度及比例 Table 2 The concentrations and ratios of VFAs in cecum digesta of pigs
2.2 盲肠食糜菌群结构

4组样本共得到4 957条高质量的16S rRNA序列,其覆盖度分别为69.21%、76.00%、73.95%和71.36%,其丰富度和多样性指数如表 3所示。在细菌门水平,PC组共有12个已知门,PP组有19个已知门,分布比例较低者未列出。其中PC组的12个门为两组共有,7个门(Armatimonadetes、Chlorobi、Chloroflexi、Nitrospirae、TM6和TM7) 为PP组独有。PC组猪盲肠食糜中的5大优势门分别为Firmicutes(46.1%)、Bacteroidetes(29.7%)、Proteobacteria(6.9%)、Tenericutes(4.4%)和Actinobacteria(1.8%)(表 4)。PP组5大优势门分别为Firmicutes(40.5%)、Bacteroidetes(30.2%)、Proteobacteria(11.2%)、Spirochaetes(3.9%)和Actinobacteria(2.9%)(表 4)。FC组共有16个已知门,FP组有13个已知门。其中9个门为2组共有,ChlorobiFibrobacteresFusobacteria3个门为FP组独有,但含量极低( < 0.1%)。FC组猪盲肠食糜中的5大优势门分别为Bacteroidetes(53.6%)、Firmicutes(30.9%)、Proteobacteria(5.1%)、Tenericutes(2.0%)和Actinobacteria(1.7%)(表 4)。FP组5大优势门分别为Bacteroidetes(58.4%)、Firmicutes(24.1%)、Proteobacteria (5.7%)、Actinobacteria(1.9%)、Tenericutes (1.4%)和Verrucomicrobia(1.4%)(表 4)。

表 3 各组样品平均序列数、覆盖率、丰富度和多样性指数 Table 3 The average sequence numbers, coverage, richness and diversity indexes of the samples from the 4 groups
表 4 各组猪盲肠主要菌群(门和属水平)分布比例 Table 4 Proportions of main bacteria (at phylum and genus levels) in cecum of pigs

表 4显示,PC组猪盲肠食糜中的5大优势菌属分别为Lactobacillus(16.0%)、Prevotella(14.7%)、Faecalibacterium(3.7%)、Streptococcus(2.3%)、Veillonella(2.0%)。PP组猪盲肠食糜中6大优势菌属为Prevotella(17.7%)、Lactobacillus(17.6%)、Limnohabitans(4.9%)、Treponema(3.9%)、Flavobacterium (3.7%)、Streptococcus (3.7%); FC组盲肠中5大优势菌属为Prevotella(38.6%)、Lactobacillus(3.3%)、Flavobacterium(2.5%)、Limnohabitans(2.5%)、Megasphaera(2.3%)。FP组盲肠中5大优势菌属为Prevotella(46.3%)、Oscillospira (2.1%)、Lactobacillus(2.1%)、Parabacteroides(1.2%)、p-75-a5(1.1%)。

2.3 盲肠中特定菌群的数量变化

Real-time PCR结果表明,与PC组相比,PP组猪盲肠食糜中总细菌、BPP、EnterococcusClostridium cluster Ⅳ的拷贝数显著增加(P < 0.05),BacteroidetesLactobacillusD. desulfuricans的数量极显著增加(P < 0.01),而Firmicutes数量极显著下降(P < 0.01);与FC组相比,FP组猪盲肠食糜中D. desulfuricans数量极显著增加(P≤0.01),总细菌、BPP、HFW数量显著下降(P < 0.05),而EnterococcusStreptococcusClostridium cluster Ⅰ数量极显著下降(P≤0.01)(表 5)。

表 5 不同处理组猪盲肠特定菌群数量(数值以lg((拷贝数)/g湿样)表示) Table 5 The quantities of certain bacterial groups in cecal digesta of pigs (lg((copies)/g wet digesta))
3 讨论

本试验发现,短期或长期饲喂高水平豌豆纤维对猪盲肠菌群的影响不尽相同。对短期饲喂豌豆纤维的仔猪而言,测序结果说明其盲肠中Firmicutes门的相对丰度较对照组下降,而Bacteroidetes门相对丰度增加,定量PCR分析也进一步证实了该结果。但在长期饲喂豌豆纤维的肥育猪盲肠中,虽然测序结果表明Bacteroidetes门相对丰度有一定增加,但定量分析并未显示Firmicutes和Bacteroidetes的数量在两组之间存在显著差异。Firmicutes和Bacteroidetes是人和大多数哺乳动物肠道中的两大类优势菌群,其比值在一定程度上与宿主能量获取和脂肪沉积有关[15]。Bacteroidetes门中的许多细菌具有降解纤维的能力,如Prevotella属。有研究发现,与长期摄入高能量低膳食纤维的欧洲儿童相比,长期摄入以水果和豆类纤维为主的非洲儿童粪便中细菌多样性更高,且Prevotella属细菌丰度极高[16]。对泰国健康儿童的研究也表明,摄入蔬菜的频率与粪便中Prevotella属的数量存在正相关[17]。本研结果与之一致。但我们发现,Bacteroidetes门中的Prevotella属和BPP的数量仅在采食豌豆纤维饲粮的仔猪盲肠中有显著增加,肥育猪盲肠中该菌属未发现类似变化。这可能与动物的年龄阶段有关。由于断奶仔猪饲粮和消化生理的影响,在一定程度上,其消化道微生物区系更容易受到日粮或环境的影响。而肥育猪Bacteroidetes门中的Prevotella属和BPP的数量未发生显著变化很可能与肥育猪对粗纤维的消化能力增加或逐渐适应有关,但现有结果尚不能说明是否肥育猪的微生物区系回归至常态,有待进一步分析。

后肠微生物代谢产物,如VFAs,与微生物功能和宿主营养物质代谢密切相关[18]。在所有VFAs中,乙酸被认为可迅速被肠上皮细胞吸收,进入宿主外周血液循环,作为宿主的能量来源之一[18]。但本研究中并未发现乙酸浓度的显著变化。相反,我们发现,采食豌豆纤维仔猪盲肠食糜中丙酸浓度的增加接近显著水平,但在长期采食豌豆纤维的肥育猪盲肠食糜中,虽然总VFAs浓度升高,但丙酸比例却显著下降。纤维在动物后肠发酵的过程中产生大量H2[19],若H2不能被快速移除,会影响后肠微生物的发酵效率,造成代谢终产物堆积,最终影响宿主健康。丙酸是Bacteroidetes发酵纤维等底物的主要产物,经肠上皮细胞吸收后进入肝,可用于糖原生成[20],此过程需要H2参与。因而丙酸的产生过程对整个后肠发酵体系而言起到移除H2的作用,保证后肠微生物的发酵效率。硫酸盐还原菌(SRB)是肠道中的一大类氢营养菌[21]D. desulfuricans是SRB中的主要成员。本研究结果暗示,豌豆纤维促进仔猪盲肠中纤维降解菌的生长,产生大量代谢终产物,氢营养菌如D. desulfuricans对日粮改变可迅速做出响应,其数量的增殖可保证后肠微生物对日粮纤维的有效发酵,但在成年猪盲肠中未发现类似变化,具体机制有待进一步研究。本研究结果同时暗示,与肥育猪相比,在仔猪日粮中添加纤维可能对其后肠相关菌群的生长有更大影响。

纤维具有改善动物免疫机能和肠道发育,减少脂肪沉积等益生作用[22]。由于纤维在动物前肠几乎不被消化,因此其益生功能与后肠微生物的发酵密切相关。VFAs是微生物代谢的主要产物,其中丁酸被认为可做为结肠上皮细胞的能源物质,促进肠上皮细胞增殖和发育,尤其在抗结直肠癌方面具有显著作用[23]。但本研究发现,无论对采食豌豆纤维的仔猪还是成年猪而言,其结肠食糜中的丁酸浓度与对照组相比均呈下降趋势。尤其是长期采食豌豆纤维的育肥猪,丁酸浓度的降低幅度接近显著水平。不同的日粮多糖成分对猪后肠VFAs浓度的影响不尽相同。人粪便体外发酵试验结果表明,淀粉发酵产生的VFAs摩尔比高于果胶[24]。此外,日粮中的抗性淀粉和果寡糖也被证实在动物后肠可导致大量丁酸产生,且抗性淀粉发酵产生的丁酸浓度高于非淀粉多糖[25]。但目前尚无研究表明日粮豌豆纤维与猪后肠VFAs浓度的关系。之前的研究表明,虽然豌豆纤维可导致猪结肠中丁酸浓度下降,但与对照组相比未达到显著水平[6],与本试验结果一致。本研究结果显示,猪日粮中添加高比例的豌豆纤维(接近最大耐受量)很可能不利于后肠微生物发酵产生丁酸,其机制有待进一步研究。

4 结论 4.1

日粮中短期或长期添加高水平豌豆纤维对仔猪和肥育猪生长性能无显著影响;日粮长期添加高水平豌豆纤维可提高肥育猪盲肠中乙酸比例,下调丁酸比例。

4.2

短期饲喂含10%豌豆纤维的饲粮可提高仔猪盲肠Bacteroidetes门丰度,可能与该门类细菌降解纤维的能力较强有关。

4.3

猪盲肠中氢营养菌D. desulfuricans对日粮中的豌豆纤维可作出迅速响应,可能改变后肠微生物发酵效率。

参考文献
[1] BÄCKHED F, MANCHESTER J K, SEMENKOVICH C F, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice[J]. Proc Natl Acad Sci U S A, 2007, 104(3): 979–984. DOI: 10.1073/pnas.0605374104
[2] BROWN J M, HAZEN S L. The gut microbial endocrine organ:bacterially-derived signals driving cardiometabolic diseases[J]. Annu Rev Med, 2015, 66(1): 343–359. DOI: 10.1146/annurev-med-060513-093205
[3] LUO Y H, YANG C, WRIGHT A D G, et al. Responses in ileal and cecal bacteria to low and high amylose/amylopectin ratio diets in growing pigs[J]. Appl Microbiol Biotechnol, 2015, 99(24): 10627–10638. DOI: 10.1007/s00253-015-6917-2
[4] HAMAKER B R, TUNCIL Y E. A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota[J]. J Mol Biol, 2014, 426(23): 3838–3850. DOI: 10.1016/j.jmb.2014.07.028
[5] LAMBERT J E, PARNELL J A, HAN J, et al. Evaluation of yellow pea fibre supplementation on weight loss and the gut microbiota:a randomized controlled trial[J]. BMC Gastroenterol, 2014, 14: 69. DOI: 10.1186/1471-230X-14-69
[6] CHE L Q, CHEN H, YU B, et al. Long-term intake of pea fiber affects colonic barrier function, bacterial and transcriptional profile in pig model[J]. Nutr Cancer, 2014, 66(3): 388–399. DOI: 10.1080/01635581.2014.884229
[7] CHEN H, MAO X B, CHE L Q, et al. Impact of fiber types on gut microbiota, gut environment and gut function in fattening pigs[J]. Anim Feed Sci Technol, 2014, 195: 101–111. DOI: 10.1016/j.anifeedsci.2014.06.002
[8] GUO X, XIA X, TANG R, et al. Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs[J]. Lett Appl Microbiol, 2008, 47(5): 367–373. DOI: 10.1111/lam.2008.47.issue-5
[9] IVARSSON E, ROOS S, LIU H Y, et al. Fermentable non-starch polysaccharides increases the abundance of Bacteroides-Prevotella-Porphyromonas in ileal microbial community of growing pigs[J]. Animal, 2014, 8(11): 1777–1787. DOI: 10.1017/S1751731114001827
[10] RINTTILÄ T, KASSINEN A, MALINEN E, et al. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR[J]. J Appl Microbiol, 2004, 97(6): 1166–1177. DOI: 10.1111/jam.2004.97.issue-6
[11] VAN DYKE M I, MCCARTHY A J. Molecular biological detection and characterization of Clostridium populations in municipal landfill sites[J]. Appl Environ Microbiol, 2002, 68(4): 2049–2053. DOI: 10.1128/AEM.68.4.2049-2053.2002
[12] CASTILLO M, MARTÍN-ORÚE S M, MANZANILLA E G, et al. Quantification of total bacteria, enterobacteria and lactobacilli populations in pig digesta by real-time PCR[J]. Vet Microbiol, 2006, 114(1-2): 165–170. DOI: 10.1016/j.vetmic.2005.11.055
[13] RYU H, GRIFFITH J F, KHAN I U H, et al. Comparison of gull feces-specific assays targeting the 16S rRNA genes of Catellicoccus marimammalium and Streptococcus spp[J]. Appl Environ Microbiol, 2012, 78(6): 1909–1916. DOI: 10.1128/AEM.07192-11
[14] BARTOSCH S, FITE A, MACFARLANE G T, et al. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota[J]. Appl Environ Microbiol, 2004, 70(6): 3575–3581. DOI: 10.1128/AEM.70.6.3575-3581.2004
[15] TURNBAUGH P J, LEY R E, MAHOWALD M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122): 1027–1031. DOI: 10.1038/nature05414
[16] DE FILIPPO C, CAVALIERI D, DI PAOLA M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa[J]. Proc Natl Acad Sci U S A, 2010, 107(33): 14691–14696. DOI: 10.1073/pnas.1005963107
[17] LA-ONGKHAM O, NAKPHAICHIT M, LEELAVATCHARAMAS V, et al. Distinct gut microbiota of healthy children from two different geographic regions of Thailand[J]. Arch Microbiol, 2015, 197(4): 561–573. DOI: 10.1007/s00203-015-1089-0
[18] DEN BESTEN G, VAN EUNEN K, GROEN A K, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism[J]. J Lipid Res, 2013, 54(9): 2325–2340. DOI: 10.1194/jlr.R036012
[19] JENSEN B B, JØRGENSEN H. Effect of dietary fiber on microbial activity and microbial gas production in various regions of the gastrointestinal tract of pigs[J]. Appl Environ Microbiol, 1994, 60(6): 1897–1904.
[20] BOETS E, DEROOVER L, LUYPAERTS A, et al. Utilization of colonic derived propionate in gluconeogenesis:an in vivo stable isotope study in humans[J]. Acta Gastroenterol Belg, 2015, 78(1).
[21] REY F E, GONZALEZ M D, CHENG J, et al. Metabolic niche of a prominent sulfate-reducing human gut bacterium[J]. Proc Natl Acad Sci U S A, 2013, 110(33): 13582–13587. DOI: 10.1073/pnas.1312524110
[22] TROMPETTE A, GOLLWITZER E S, YADAVA K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis[J]. Nat Med, 2014, 20(2): 159–166. DOI: 10.1038/nm.3444
[23] BULTMAN S J. Molecular pathways:gene-environment interactions regulating dietary fiber Induction of proliferation and apoptosis via butyrate for cancer prevention[J]. Clin Cancer Res, 2014, 20(4): 799–803. DOI: 10.1158/1078-0432.CCR-13-2483
[24] PUERTOLLANO E, KOLIDA S, YAQOOB P. Biological significance of short-chain fatty acid metabolism by the intestinal microbiome[J]. Curr Opin Clin Nutr, 2014, 17(2): 139–144. DOI: 10.1097/MCO.0000000000000025
[25] PATTEN G S, KERR C A, DUNNE R A, et al. Resistant starch alters colonic contractility and expression of related genes in rats fed a western diet[J]. Digest Dis Sci, 2015, 60(6): 1624–1632. DOI: 10.1007/s10620-015-3537-8