畜牧兽医学报  2017, Vol. 48 Issue (7): 1300-1305. DOI: 10.11843/j.issn.0366-6964.2017.07.014    PDF    
猪繁殖与呼吸综合征病毒感染的MARC-145细胞中外泌体的分离与鉴定
张亮, 王帅帅, 陈忍霞, 陶佳丽, 范阔海, 段马魁, 扆妍妍, 姜俊兵     
山西农业大学动物科技学院, 太谷 030801
摘要:旨在寻找有效方法,能够从PRRSV感染的MARC-145细胞中分离细胞产生的外泌体,并为探索外泌体在PRRSV感染细胞时的作用奠定基础。使用试剂盒提取MARC-145细胞产生的外泌体,利用电镜负染色法和Western blot技术对MARC-145细胞产生的外泌体进行鉴定;采用碘克沙醇速率区带离心分离MARC-145细胞产生的外泌体,并用Western blot技术检测外分泌体的分布区间。用PRRSV感染MARC-145细胞后,使用试剂盒对MARC-145细胞产生的外泌体进行初步分离后,采用免疫磁珠捕获技术进行进一步纯化,并使用Western blot进行验证。Western blot结果显示MARC-145细胞产生的外泌体存在特异性标记蛋白CD63、Tsg101和Alix,不存在外泌体非标记蛋白EEA1、GRP94和Cytochrome C;电镜负染色结果显示MARC-145细胞产生的外泌体尺寸大小处于30~100 nm,符合外泌体特征。利用Western blot对碘克沙醇速率区带离心中收集到的样品进行分析,结果显示MARC-145细胞产生的外泌体分布于7.2%~18%碘克沙醇密度区间。Western blot结果显示免疫磁珠捕获法获得的对照组不存在外泌体标记蛋白Tsg-101。以上结果表明MARC-145细胞能够产生外泌体,并且通过免疫磁珠捕获法能够从PRRSV感染的MARC-145细胞中将其分离。
关键词MARC-145细胞    外泌体    PRRSV粒子    速率区带离心    免疫磁珠    
Separation and Identification of Exosomes from MARC-145 Cells Infected with Porcine Reproductive and Respiratory Syndrome Virus
ZHANG Liang, WANG Shuai-shuai, CHEN Ren-xia, TAO Jia-li, FAN Kuo-hai, DUAN Ma-kui, YI Yan-yan, JIANG Jun-bing     
College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
Abstract: The objective of this study was to find an efficient method to isolate the exosomes from MARC-145 cells infected with PRRSV, and lay the foundations for explore the role of exosomes in PRRSV infection. Exosomes were isolated from MARC-145 cells using Total Exosomes Isolation. Exosomes were identified by using Western blot and electron microscopy. The rate-zonal centrifugation was designed to isolate the exosomes, its distribution range was identified by Western blot. Total Exosomes Isolation and immune magnetic bead capture technology were used to isolate the exosomes from MARC-145 cells infected with PRRSV, its characteristic were detected by Western blot. Results were as follows:CD63, Alix and Tsg101, three exosomal protein markers, were expressed in the purified exosomes from MARC-145 cells. EEA1, GRP94 and Cytochrome C did not expressed, which were not exosomal protein markers. The isolated exosomes were verified as small vesicles of approximately 30-100 nm in size by using the electron microscopy (TEM) assay. Using CD63 as an exosomes marker, we demonstrated that OptiprepTM velocity gradients were efficient in isolating exosomes, with exosomes distributed in 7.2%-18% zones. The samples obtained by immunoaffinity capture were tested by Western blot, the results showed that isotype control magnetic beads did not express exosomal marker Tsg-101. These results indicated that exosomes are released into the extracellular space from MARC-145 cells, and suggested that the exosomes were successfully purified from MARC-145 cells infected with PRRSV by using immune magnetic bead capture technology.
Key words: MARC-145 cells     exosomes     PRRSV particles     rate-zonal centrifugation     immune magnetic    

猪繁殖与呼吸综合征病毒(PRRSV)为单股正链RNA病毒,呈球状,电镜下大小为50~65 nm,蔗糖浮力密度为1.13~1.27 g·mL-1[1-2]。PRRSV主要宿主细胞为猪肺泡巨噬细胞(PAM)[3],此外,MARC-145细胞是PRRSV的重要体外研究宿主[4]

外泌体是真核细胞在自身新陈代谢或受周围环境刺激下分泌的一种脂质双层膜性小囊泡,大小为30~100 nm,蔗糖浮力密度为1.13~1.19 g·mL-1[5-6]。其典型形态因电镜处理的方式不同而各异,通常在负染条件下呈现典型“杯状”结构,而通过冷冻电镜等方式处理的结果为圆形结构[7-9],具有排出细胞垃圾、介导免疫功能、参与病毒感染等作用[10-15]

研究显示HIV、HCV和ALV等多种病毒都能够利用外泌体的“特洛伊假说”而达到病毒的持续性、隐蔽性感染,虽然这些病毒与PRRSV有不同的感染机制,但这些病毒利用外泌体所形成的潜在免疫逃避机制及外泌体的形成过程与PRRSV粒子的内化过程具有相似性。此外,有研究显示,被PRRSV感染的动物血液中分离到的外泌体含有病毒抗原蛋白[16]。所以我们推测外泌体可能参与PRRSV的感染。分离PRRSV感染的细胞产生的外泌体是证明外泌体在PRRSV感染中是否起到作用的关键步骤。由于PRRSV粒子和外泌体浮力密度相同、尺寸大小相近,造成了难于分离的难题。因此,本试验采用不同方法分离并鉴定MARC-145细胞产生的外泌体,之后采用免疫磁珠捕获技术从PRRSV感染的MARC-145细胞中分离细胞产生的外泌体。为探索外泌体在PRRSV感染细胞时的作用奠定基础。

1 材料与方法 1.1 细胞、病毒及主要试剂

MARC-145细胞购于中国兽医药品监察所。PRRSV由江苏省农业科学院馈赠[17]

Total Exosome Isolation(Life Technologies);OptiPrepTM梯度离心液(Axis-shield);胞外体链酶亲和素磁珠(Life Technologies);抗CD63鼠单克隆抗体(Santa Cruz);抗Alix鼠单克隆抗体(Santa Cruz);抗β-actin鼠单克隆抗体(康为世纪);抗Tsg-101兔多克隆抗体(Bioworld);抗EEA1兔多克隆抗体(博奥森);抗Cytochrome C兔多克隆抗体(博奥森);GRP94兔多克隆抗体(Bioworld);山羊抗小鼠IgG-HRP标记二抗(康为世纪);山羊抗兔IgG-HRP标记二抗(Solarbio);生物素化抗CD63鼠单克隆抗体(BioLegend);生物素化鼠IgG1:K链同型对照抗体(BioLegend)。

1.2 MARC-145细胞产生的外泌体的提取和Western blot鉴定

参照文献方法[17]去除内源性外泌体对试验的干扰,将FBS 100 000 g(SW32TI转头)离心14 h。细胞培养于去除FBS内源性外泌体的DMEM高糖培养基中,24 h后收集细胞上清按Total Exosome Isolation说明书提取外泌体,并用BCA蛋白浓度测定试剂盒测定蛋白质浓度。分别以CD63(1:300)、Alix(1:400)、Tsg-101(1:500)、EEA1(1:300)、GRP94(1:500)、Cytochrome C(1:200) 和β-actin(1:2 000) 的抗体为一抗,山羊抗鼠IgG或山羊抗兔IgG为二抗进行Western blot检测。

1.3 外泌体的电镜观察

将“1.2”制备好的外泌体样品20 μL滴于2 mm载样铜网,用滤纸沿铜网边缘轻轻擦拭,吸干多余水分,3%磷钨酸滴于铜网上,室温负染5 min,白炽灯下烤干,将载样铜网置于电镜样品室,80 kV下观察样品形态,200 nm下拍照。

1.4 碘克沙醇速率区带离心分离外泌体

参照文献方法[18]收集MARC-145细胞培养上清200 mL,3 000 g离心30 min除去细胞和细胞碎片,100 000 g离心2 h沉淀外泌体。弃去上清液,逐步加入PBS稀释,使其最终密度小于终浓度为6%碘克沙醇稀释液的密度(1.032 g·mL-1)。使用金属套管针铺设密度梯度离心液(密度梯度配置见表 1),共11个梯度,每梯度3 mL,31 200 r·min-1离心90 min后收集各梯度区间样品,Western blot进行分析。

表 1 密度梯度配置表 Table 1 The preparation of iodinated density gradient
1.5 免疫磁珠分离PRRSV感染的MARC-145细胞产生的外泌体

用100 TCID50 PRRSV感染MARC-145细胞,细胞培养24 h后,按Total Exosome Isolation说明书对PRRSV感染的MARC-145细胞产生的外泌体进行初步分离。按照Exosome-Streptavidin for Isolation试剂盒说明书要求,形成抗体磁珠偶联复合物:Streptavidin-anti CD63,Streptavidin-mouse IgG1(同型对照),100 μg粗提物加入100 μL链酶亲和素磁珠偶联的生物素化抗体。4 ℃ 650 r·min-1离心混匀24 h。混匀结束后,将离心管至于磁力架静置1 min,弃去上清液,取出离心管加入400 μL Isolation buffer用移液枪轻轻吹打,将离心管放入磁力架1 min,弃去Isolation buffer,加入蛋白裂解液(1×RIPA buffer)到含有磁珠的外泌体样品中,4 ℃裂解样品10~15 min,利用Tsg-101抗体对分离到的外泌体进行Western blot鉴定。

2 结果 2.1 MARC-145细胞产生的外泌体Western blot鉴定

Western blot鉴定MARC-145细胞产生的外泌体与细胞蛋白,结果如图 1所示,MARC-145细胞产生的外泌体存在特异性标记蛋白CD63、Tsg-101和Alix,不存在外泌体非标记蛋白EEA1、GRP94和Cytochrome C。

A图显示外泌体蛋白考马斯亮蓝染色:通过对照显示外泌体与细胞蛋白质的差异,能够明显看出随着蛋白质相对分子质量的降低,外泌体蛋白质丰度逐渐降低;B图为外泌体蛋白与细胞蛋白的Western blot试验结果,通过分析外泌体标志性蛋白,确定MARC-145细胞产生的外泌体包含外泌体标记蛋白 Fig.A represent coomassie brilliant blue staining: compared with cell protein show that the difference in exosomes proteins and cellular proteins, exosomes proteins abundance are also reduced with the protein molecular weight reducing. Fig.B represent Western blot of exosomes and cellls proteins, through analysis the potential markers of exosomes, confirm that the exosomes from MARC-145 cells contains exosomal marker proteins 图 1 MARC-145细胞产生的外泌体蛋白鉴定 Figure 1 The protein identification of exosomes from MARC-145 cells
2.2 MARC-145细胞产生的外泌体电镜鉴定

电镜负染结果如图 2所示,可见从MARC-145细胞培养基中提取纯化的外泌体为球型的小囊泡,大小均匀,平均直径大小在30~100 nm之间,符合外泌体一般特征。

A.大小在30~100 nm之间的外泌体,箭头所示为球形;B.大小在30~100 nm之间的外泌体,箭头所示外泌体直径约80 nm A. The size of the exosomes is about 30 to 100 nm, the arrow shows exosomes as spherical; B. The size of the exosomes is about 30 to 100 nm, the arrow shows that the diameter of exosomes is about 80 nm 图 2 MARC-145细胞产生的外泌体形态特征(电镜负染) Figure 2 Morphological characterization of exosome isolated from MARC-145 cells culture supernatants (following negative staining, Bar=200 nm)
2.3 密度梯度离心试验

图 3所示,以CD63作为标记蛋白,Western blot结果显示外泌体分布范围在2~11梯度(7.2%~18%碘克沙醇密度区间)。

外泌体位于7.2%~18%碘克沙醇梯度之间,密度为1.036 4~1.096 g·mL-1 Exosomes located between 7.2%-18% iodixanol gradient of 1.036 4-1.096 g·mL-1 图 3 碘克沙醇速率区带离心 Figure 3 Distribution of exosomes which dimentation velocities in an iodixanol
2.4 免疫磁珠获取物Western blot分析

图 4所示,Western blot分析显示磁珠包被CD63抗体结果呈阳性,而磁珠包被同型抗体呈阴性,提示免疫磁珠捕获法能够将外泌体从细胞感染模型中分离。

图 4 免疫磁珠分离外泌体 Figure 4 Magnetic bead-captured exosomes
3 讨论

PRRSV与受体细胞结合后,可以依靠宿主细胞,一方面完成自身繁殖,另一方面损伤宿主细胞,引起机体广泛的免疫抑制,除了病毒自身在受体细胞内发挥作用外,是否还存在其他方式的病毒感染模式还不为所知。

外泌体是由真核细胞主动分泌的膜性小囊泡,其主要功能是介导细胞间的通讯。外泌体的研究方法主要是分离、鉴定和功能分析,不同于外泌体的体液分离,分离细胞培养上清中的外泌体首先要去除血清中的外泌体污染,参照文献方法[18-19],作者将FBS 100 000 g离心14 h以去除血清内源性外泌体的污染。目前,外泌体的分离方式主要有超速离心法、免疫磁珠捕获法和试剂盒提取法[8, 18]。由于病毒粒子与外泌体具有相似的物理特性,传统的分离方法无法实现PRRSV粒子与外泌体的分离,首先使用外泌体提取试剂盒分离外泌体,选择外泌体常见的表面标记蛋白(CD63、Alix、Tsg-101) 和非外泌体标记蛋白(EEA1、GRP94、Cytochrome C)进行Western blot鉴定,同时进行了电镜观察,比较发现结果与其他文献描述的外泌体特征一致[20]。由于碘克沙醇具有低渗透性、细胞无毒性、离心时间短等优点,我们又选择碘克沙醇作为梯度介质对MARC-145细胞产生的外泌体做了速率区带离心,并用Western blot技术进行了鉴定。通过以上三种方式分离并鉴定了MARC-145细胞产生的外泌体,证实MARC-145细胞能够产生外泌体。

特洛伊外泌体假说认为逆转录病毒能够劫持外泌体的形成,在释放途径形成不依赖胞膜蛋白的非受体介导的病毒感染模式,在研究HIV导致细胞凋亡的机制中,证明这种病毒感染途径被称为病毒感染的外泌体途径。PRRSV的感染是否也利用了该途径,成为解释PRRSV致病机制新的研究靶点。笔者用PRRSV感染MARC-145细胞,利用试剂盒进行初步分离后,将磁珠包被CD63抗体,选取外泌体特异性标记蛋白Tsg-101通过Western blot技术对分离产物进行了鉴定,结果显示磁珠包被CD63抗体呈阳性,而磁珠包被同型抗体呈阴性,提示免疫磁珠捕获法能够将外泌体从细胞感染模型中分离出来。为了验证免疫磁珠技术获得的外泌体是否携带PRRSV的结构蛋白成分,笔者选用PRRSV中表达量较高的结构蛋白N蛋白、GP5蛋白和M蛋白的抗体经过Western blot分析发现外泌体中并不包含这些结构蛋白。后续笔者会对外泌体中含有的蛋白质成分和基因组进行进一步分析,以确认外泌体在PRRSV感染过程中的作用。

4 结论

100 000 g高速离心14 h处理的FBS满足MARC-145细胞生长的基本需求,建立了外泌体研究的细胞培养模式。体外培养的MARC-145细胞能够分泌外泌体,并且符合其特征。碘克沙醇速率区带离心显示分离的外泌体分布于2~11区间(7.2%~18%碘克沙醇密度)。免疫磁珠捕获技术可以有效地将PRRSV感染的MARC-145细胞产生的外泌体分离出来。

参考文献
[1] BENFIELD D A, NELSON E, COLLINS J E, et al. Characterization of swine infertility and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332)[J]. J Vet Diagn Invest, 1992, 4(2): 127–133. DOI: 10.1177/104063879200400202
[2] STADEJEK T, STANKEVICIUS A, MURTAUGH M P, et al. Molecular evolution of PRRSV in Europe:current state of play[J]. Vet Microbiol, 2013, 165(1): 21–28.
[3] CHA S H, CHOI E J, PARK J H, et al. Molecular characterization of recent Korean porcine reproductive and respiratory syndrome (PRRS) viruses and comparison to other Asian PRRS viruses[J]. Vet Microbiol, 2006, 117(2): 248–257.
[4] KIM H S, KWANG J, YOON I J, et al. Enhanced replication of porcine reproductive and respiratory syndrome (PRRS) virus in a homogeneous subpopulation of MA-104 cell line[J]. Arch Virol, 1993, 133(3-4): 477–483. DOI: 10.1007/BF01313785
[5] JOHNSTONE R M, ADAM M, HAMMOND J R, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)[J]. J Biol Chem, 1987, 262(19): 9412–9420.
[6] RAPOSO G, NILMAN H W, STOORVOGEL W, et al. B lymphocytes secrete antigen-presenting vesicles[J]. J Exp Med, 1996, 183(3): 1161–1172. DOI: 10.1084/jem.183.3.1161
[7] CHOI D S, CHOI D Y, HONG B S, et al. Quantitative proteomics of extracellular vesicles derived from human primary and metastatic colorectal cancer cells[J]. J Extracell Vesicles, 2012. DOI: 10.3402/jev.v1i0.18704
[8] ZERINGER E, LI M, BARTA T, et al. Methods for the extraction and RNA profiling of exosomes[J]. World J Methodol, 2013, 3(1): 11–18. DOI: 10.5662/wjm.v3.i1.11
[9] RAPOSO G, STOORVOGEL W. Extracellular vesicles:exosomes, microvesicles, and friends[J]. J Cell Biol, 2013, 200(4): 373–383. DOI: 10.1083/jcb.201211138
[10] MECKES D G Jr, GUNAWARDENA H P, DEKROON R M, et al. Modulation of B-cell exosome proteins by gamma herpesvirus infection[J]. Proc Natl Acad Sci U S A, 2013, 110(31): E2925–E2933. DOI: 10.1073/pnas.1303906110
[11] CHUGH P E, SIN S H, OZGUR S, et al. Systemically circulating viral and tumor-derived microRNAs in KSHV-associated malignancies[J]. PLoS Pathog, 2013, 9(7): e1003484. DOI: 10.1371/journal.ppat.1003484
[12] GOULD S J, BOOTH A M, HILDRETH J E K. The Trojan exosome hypothesis[J]. Proc Natl Acad Sci U S A, 2003, 100(19): 10592–10597. DOI: 10.1073/pnas.1831413100
[13] ADMYRE C, JOHANSSON S M, QAZI K R, et al. Exosomes with immune modulatory features are present in human breast milk[J]. J Immunol, 2007, 179(3): 1969–1978. DOI: 10.4049/jimmunol.179.3.1969
[14] RAMAKRISHNAIAH V, THUMANN C, FOFANA I, et al. Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells[J]. Proc Natl Acad Sci U S A, 2013, 110(32): 13109–13113. DOI: 10.1073/pnas.1221899110
[15] IZQUIERDO-USEROS N, NARANJO-GÓMEZ M, ARCHER J, et al. Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway[J]. Blood, 2009, 113(12): 2732–2741. DOI: 10.1182/blood-2008-05-158642
[16] MONTANER-TARBES S, BORRÁS F E, MONTOYA M, et al. Serum-derived exosomes from non-viremic animals previously exposed to the porcine respiratory and reproductive virus contain antigenic viral proteins[J]. Vet Res, 2016, 47(1): 59. DOI: 10.1186/s13567-016-0345-x
[17] 李贺侠. 猪高热病主要病原HP PRRSV的病原学研究[D]. 扬州: 扬州大学, 2008.
LI H X. Research on etiology of highly-pathogenic porcine reproductive and respiratory syndrome virus about major pathogen of swine high fever[D]. Yangzhou:Yangzhou University, 2008. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-11117-2008087216.htm
[18] THÉRY C, AMIGORENA S, RAPOSO G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids[M]//Current Protocols in Cell Biology. New York:John Wiley & Sons, Inc, 2006.
[19] LÄSSER C, ELDH M, LÖTVALL J. Isolation and characterization of RNA-containing exosomes[J]. J Vis Exp, 2012(59): 3037.
[20] LI J H, LIU K C, LIU Y, et al. Exosomes mediate the cell-to-cell transmission of IFN-α-induced antiviral activity[J]. Nat Immunol, 2013, 14(8): 793–803. DOI: 10.1038/ni.2647