畜牧兽医学报  2017, Vol. 48 Issue (6): 1044-1053. DOI: 10.11843/j.issn.0366-6964.2017.06.009    PDF    
日循环高温对蛋鸡抗氧化能力及免疫机能的影响
刁华杰1,2#, 冯京海2#, 王雪洁2, 刁新平1     
1. 东北农业大学动物科技学院, 哈尔滨 150030;
2. 中国农业科学院北京畜牧兽医研究所, 北京 100193
摘要:本试验旨在模拟夏季规模化蛋鸡舍内温度变化,研究不同日循环高温对蛋鸡抗氧化能力及机体免疫机能的影响,以期引起生产及研究人员对夏季高温的重视。选取28周龄海兰褐蛋鸡288只,随机分为适温组(21℃,自由采食)、低循环温度组(27~30℃,自由采食)、高循环温度组(29~35℃,自由采食)及采食配对组(21℃,饲喂量同高循环温度组)4个处理组,每个处理6个重复,每个重复12只鸡,分别饲养于4个人工环境控制舱内,试验持续4周。从试验第25天开始,使用微型温度记录仪测定连续3天蛋鸡的体核温度。试验第29天,每重复随机选取1只鸡翅静脉采血,而后屠宰,分离脾和肝,计算脾脏指数,测定蛋鸡血清和肝中丙二醛(MDA)、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、过氧化氢酶(CAT)、总抗氧化能力(T-AOC)及血清中免疫球蛋白A(IgA)、G(IgG)、M(IgM)、溶菌酶。结果表明,与适温组相比,低循环温度组蛋鸡体核温度(TC)无显著差异,除血清T-AOC降低外,肝和血清中MDA含量及抗氧化酶活性均无显著差异,血清IgA、IgM含量显著降低(P<0.05);而高循环温度组蛋鸡TC显著升高(P<0.05),血清和肝中MDA含量显著升高(P<0.05),T-AOC显著下降(P<0.05),血清GSH-Px活性有降低趋势(0.05<P<0.1),血清IgA、IgM含量以及脾脏指数显著降低(P<0.05);与采食配对组相比,高循环温度组蛋鸡TC显著升高(P<0.05),血清和肝中MDA含量同样显著升高(P<0.05),T-AOC显著下降(P<0.05),血清GSH-Px活性显著降低(P<0.05),血清中仅IgA含量显著降低(P<0.05),IgM、IgG含量以及脾脏指数无显著差异。结果表明,夏季蛋鸡舍温度在27~30℃波动时,蛋鸡血液和肝中抗氧化能力变化不明显,但血液中IgA和IgM含量显著降低;在29~35℃波动时,蛋鸡的体核温度显著升高,血液和肝中抗氧化能力显著降低,脾脏指数及血液中IgA和IgM含量显著降低。高温对蛋鸡抗氧化能力的影响可能与升高体温有关,对免疫机能的影响可能与降低采食量有关。
关键词高温    蛋鸡    体温    抗氧化能力    免疫功能    
Effect of Cyclic High Temperature on Antioxidant Capacity and Immune Function of Laying Hens
DIAO Hua-jie1,2#, FENG Jing-hai2#, WANG Xue-jie2, DIAO Xin-ping1     
1. College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China;
2. Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
Abstract: The aim of present experiment was to simulate the variation of ambient temperature in laying hens house in summer, evaluate the effects of different cyclic high temperature on antioxidant capacity and immune function of laying hens, and attract the attention of producers and researchers for high environmental temperature in summer. Two hundred eighty-eight Hy-line Brown hens, 28 weeks of age, were randomly divided into 4 groups and housed in 4 environment controlled chambers. Four groups were normal thermal group (NT, 21℃, ad libitum), low cyclic temperature group (LCT, 27-30℃, ad libitum), high cyclic temperature group(HCT, 29-35℃, ad libitum), and pair-feeding group (PF, 21℃, feeding amount was the same as that of high cyclic temperature group chickens), respectively. The experiment lasted for 4 weeks. There was 6 repeats in each treatment, and 12 chicken in each repeat. Core body temperature (TC) was recorded using a miniature temperature recorder during 3 days before the end of the experiment. At the end of the experiment, one hen from each repeat was randomly selected and blood samples were collected via the wing vein and serum was separated and stored at -20℃. The hens were then slaughtered, the liver and spleen were collected and stored at -20℃, the spleen index was determined. MDA, SOD, GSH-Px, CAT and T-AOC in serum and liver, IgA, IgG, IgM concentration in serum and lysozyme in serum were determined.The results showed that, compared with NT group, no significant differences were found in core body temperature in LCT group, and no significant differences were detected in MDA and antioxidant enzyme activity in serum and liver except the T-AOC concentration, which was significantly decreased in serum (P < 0.05), and IgA and IgM concentration in serum were also significantly decreased in LCT group(P < 0.05). While compared with NT group, the HCT group significantly increased TC and MDA concentration(P < 0.05), decreased T-AOC concentration in serum and liver(P < 0.05), the GSH-Px activity in serum also had a tendency to decline(0.05 < P < 0.1), IgA, IgM concentration in serum and spleen index were all significantly decreased in HCT group(P < 0.05).Compared with the PF group, TC of HCT group was significantly increased(P < 0.05), MDA concentration was significantly increased and T-AOC concentration was significantly decreased in serum and liver(P < 0.05), GSH-Px activity in serum was also significantly decreased(P < 0.05). Compared with the PF group, only IgA concentration in serum of HCT group was significantly decreased(P < 0.05). The results of present study indicated that antioxidant capacity in serum and liver was not significantly affected, while IgA and IgM concentration in serum were significantly decreased in 27-30℃ cyclic temperature group. And 29-35℃ cyclic temperature group significantly increased TC, decreased antioxidant capacity in serum and liver, and decreased spleen index and IgA, IgM concentration in serum. The effect of cyclic temperature on antioxidant capacity and immune function may be associated with the rise of body temperature and the reduction of feed consumption, respectively.
Key words: high temperature     laying hens     body temperature     antioxidant capacity     immune function    

环境高温不仅显著降低家禽采食量[1-2],影响家禽的生产性能[3],还能导致机体抗病能力下降,影响家禽的健康[4-5],这种影响可能与高温诱导家禽氧化损伤[6-7],影响机体免疫机能有关[8]。正常情况下机体自由基产生与清除维持着动态平衡,高温环境下这一平衡被破坏。研究表明,高温应激能增加肉鸡骨骼肌[9]和蛋鸡血浆中[7]ROS含量,同时抑制抗氧化酶活性,破坏机体氧化还原体系[10],进而诱导氧化损伤[7, 11-13]。正常的免疫功能是维持机体健康的前提和保障,高温环境诱导机体氧化损伤可能进一步影响家禽的免疫机能[14]。研究显示,高温可影响机体血液白细胞水平[15],异嗜性粒细胞和淋巴细胞比例(H/L)[16]以及抗体水平[8, 17]。郝二英等[18]研究表明,蛋鸡35℃高温组与20℃对照组相比,血液中IgA、IgM、IgG含量均显著降低。上述研究主要以持续高温为主,持续高温的研究结果并不能反映实际生产的情况[19]。目前我国规模化蛋鸡养殖场普遍采用风机-湿帘等降温措施,夏季高温季节鸡舍内温度一般可以控制在30℃以下[20],有的仅采取机械通风降温方式,鸡舍内最高温度可达35℃以上,一般是在29~35℃波动[21-22],这种条件下蛋鸡体温的变化以及是否会诱导氧化应激、抑制免疫机能尚不清楚。

本试验通过模拟夏季规模化蛋鸡舍内温度的变化,研究27~30℃和29~35℃两种符合夏季生产实际的日循环高温对蛋鸡抗氧化能力及免疫机能的影响,以期引起生产及研究人员对于夏季高温的重视,为夏季高温季节蛋鸡合理饲养管理提供科学依据。

1 材料与方法 1.1 试验动物

选择28周龄健康的海兰褐蛋鸡288只,随机分为4个处理,分别为适温组(21℃,自由采食)、低循环温度组(27~30℃,自由采食)、高循环高温组(29~35℃,自由采食)及采食配对组(21℃,按前1天高循环温度组的采食量饲喂)4个处理组,每个处理组6个重复,每个重复12只鸡,分别饲养于动物营养学国家重点实验室的4个环控舱内,各环控舱每日温度变化见实测图 1,舱内相对湿度均设为(60%±7%),采用16L:8D的光照制度,自由饮水,每天饲喂2次(06:00和16:30),预试期2周,试验持续4周(30~34周)。用微型温度记录仪(DS1922L, Maxim, San Jose, CA, U.S.精确度±0.5℃)记录环境温度的变化。

A. 适温舱;B. 低循环温度舱;C. 高循环温度舱;D. 采食配对舱 A. Normal temperature chamber; B. Low cyclic temperature chamber; C. High cyclic temperature chamber; D. Pair-feeding chamber 图 1 环境控制舱实测温度 Figure 1 The measured temperature value of climate chambers
1.2 试验饲粮及饲养管理

蛋鸡饲喂基础日粮为玉米-豆粕型,日常饲养管理参照《海兰褐蛋鸡饲养手册,2014》,另外参照美国NRC(1994) 和中华人民共和国农业行业标准-鸡饲养标准(NY/T33-2004),并结合生产实际配制饲粮,日粮组成和营养成分见表 1

表 1 试验期蛋鸡基础日粮组成及营养水平(干物质基础) Table 1 Experimental diet composition and nutrient levels (DM basis)
1.3 样品采集

试验结束前3 d,每个重复随机选取1只鸡,参考常玉等[23]的方法,采用微型温度记录仪测定蛋鸡的体核温度(Core body temperature,TC)。试验第29天,每个重复随机选取3只蛋鸡,翅静脉采血,倾斜放置20 min,3 000 r·min-1离心10 min,分离血清,-20℃保存。称重后迅速屠宰,分离脾和肝,肝组织-20℃保存,脾用滤纸吸取表面水分,电子天平称鲜重,计算免疫器官指数,脾脏指数(g·kg-1)=免疫器官鲜重(g)/活体重(kg)。

1.4 样品测定

抗氧化指标:血清和肝中丙二醛(MDA)、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、过氧化氢酶(CAT)、总抗氧化能力(T-AOC)。免疫指标:血清中免疫球蛋白A(IgA)、G(IgG)、M(IgM)、溶菌酶。其中血清IgA、IgG、IgM采用ELISA法测定,溶菌酶采用光学法测定。以上测定所用试剂盒购自南京建成生物工程研究所,具体操作按其说明书进行。

1.5 数据分析

采用SAS 9.2软件中的ANOVA过程对适温组及高、低循环温度组数据进行单因素方差分析,方差显著或有影响趋势者采用Duncan法进行多重比较;采用SAS 9.2软件中TTEST过程对采食配对组和高循环温度组数据进行t检验分析,结果均以“平均值±标准差(x±SD)”表示,P<0.05为差异显著性标准,0.05<P<0.10为有影响趋势。

2 结果 2.1 日循环高温对蛋鸡体核温度的影响

由蛋鸡24 h体核温度的散点图(图 2A)可以看出,在12:00之前,低循环温度组蛋鸡体核温度与适温组基本一致,之后体核温度略高于适温组;高循环温度组蛋鸡体核温度一直高于适温组。蛋鸡体核温度在饲喂之后1 h内出现急性升高的峰值,其他时间的变化与环境温度变化基本一致。高循环温度组蛋鸡14:00-16:00平均体核温度显著高于适温组和采食配对组(P<0.05;图 2B图 2C),而低循环温度组与适温组差异不显著(P>0.05;图 2B)。

A.蛋鸡24 h TC散点图;B.自由采食条件下14:00-16:00蛋鸡平均TC;C.相同采食量条件下采食配对组14:00-16:00蛋鸡平均TC。不同小写字母表示差异显著(P<0.05) 或有趋势(0.05<P<0.1),下表同 A. Scatter plot of TC in laying hens during 24 h; B. The mean TC of laying hens for ad libitum during 14: 00-16: 00; C. The mean TC of laying hens for pair-feeding group during 14: 00-16: 00. The different small letters mean significant difference(P < 0.05) or trend(0.05 < P < 0.1), the same as below 图 2 日循环高温对蛋鸡体核温度的影响 Figure 2 Effect of cyclic high ambient temperature on TC of laying hens
2.2 日循环高温对蛋鸡抗氧化能力的影响 2.2.1 日循环高温对蛋鸡血清抗氧化能力的影响

表 2可以看出,与适温组相比,低循环温度组蛋鸡血清中除T-AOC水平显著降低外(P<0.05),T-SOD、GSH-Px、CAT活性及MDA含量均无显著差异;高循环温度组蛋鸡血清中T-AOC显著下降(P<0.05),GSH-Px活性有降低趋势(P<0.10),MDA水平显著升高(P<0.05)。由图 3可以看出相同采食量下(与采食配对组相比),高循环温度组仍然显著降低血清GSH-Px活性和T-AOC水平,显著升高MDA含量(P<0.05),表明高温直接影响血清抗氧化能力。

表 2 日循环高温对蛋鸡血清抗氧化能力的影响(自由采食) Table 2 Effect of cyclic high ambient temperature on antioxidant capacity in serum of laying hens(ad libitum)
图 3 日循环高温对蛋鸡血清抗氧化能力的影响(相同采食) Figure 3 Effect of cyclic high ambient temperature on antioxidant capacity in serum of laying hens(the same feed intake)
2.2.2 日循环高温对蛋鸡肝抗氧化能力的影响

表 3可以看出,低循环温度组对蛋鸡肝抗氧化酶活性、T-AOC以及MDA含量无显著影响;高循环温度组显著降低肝T-AOC水平(P<0.05),显著升高MDA含量(P<0.05),对抗氧化酶活性无显著影响。由图 4可以看出,相同采食量条件下,高循环温度组仍然显著降低T-AOC水平,升高肝MDA水平(P<0.05),并且分析发现配对组和适温组无显著差异,表明夏季高循环温度降低机体抗氧化能力,诱导机体氧化损伤可能与采食量无关。

表 3 日循环高温对蛋鸡肝抗氧化能力的影响(自由采食) Table 3 Effect of cyclic high ambient temperature on antioxidant capacity in liver of laying hens(ad libitum)
图 4 日循环高温对蛋鸡肝抗氧化能力的影响(相同采食) Figure 4 Effect of cyclic high ambient temperature on antioxidant capacity in liver of laying hens(the same feed intake)
2.3 日循环高温对蛋鸡免疫机能的影响 2.3.1 日循环高温对蛋鸡血清免疫指标的影响

表 4可以看出,与适温组相比,低循环温度组和高循环温度组血清中IgA、IgM的含量均显著降低(P<0.05),IgG含量和溶菌酶活性无显著影响。由图 5可以看出,与采食配对组相比,高循环温度组仅显著降低血清IgA含量(P<0.05),对IgM、IgG含量和溶菌酶活性无显著影响,这表明高温影响蛋鸡免疫机能可能与降低采食量有关。

表 4 日循环高温对蛋鸡血清免疫指标的影响(自由采食) Table 4 Effect of cyclic high ambient temperature on serum immune indexes of laying hens(ad libitum)
图 5 日循环高温对蛋鸡血清免疫指标的影响(相同采食) Figure 5 Effect of cyclic high ambient temperature on serum immune indexes of laying hens(the same feed intake)
2.3.2 日循环高温对蛋鸡脾脏指数的影响

图 6可以看出,和适温组相比,低循环温度组对蛋鸡脾脏指数影响不显著,高循环温度组显著降低蛋鸡脾脏指数(P<0.01)。在相同采食量下,高循环温度组蛋鸡脾脏指数仅有下降趋势(0.05<P<0.1),这表明脾脏指数的下降不仅是由于高温的直接影响,还可能由采食量降低所引起。

A.自由采食;B.相同采食 A. ad libitum feed consumption; B. Pair-feeding 图 6 日循环高温对蛋鸡脾脏指数的影响 Figure 6 Effect of cyclic high ambient temperature on spleen index of laying hens
3 讨论 3.1 日循环高温对蛋鸡抗氧化能力的影响

动物机体内活性氧(ROS)的产生、利用与清除维持着动态平衡,当机体ROS产生和抗氧化体系失衡时,可引起氧化应激,导致机体内脂质、蛋白、核酸等大分子过氧化,影响机体的健康[14]。本研究发现,低循环温度组蛋鸡血清、肝中MDA含量无显著变化,而高循环温度组MDA含量显著升高,表明夏季蛋鸡舍内温度控制在30℃以下时,不会造成蛋鸡的氧化损伤,当鸡舍温度在29~35℃变化时可引发蛋鸡氧化损伤。杨晓岚等[24]同样发现,28~35℃日循环高温应激7和14 d后,蛋鸡血浆及肝中MDA含量均显著升高。李军乔[25]发现,28.8~36.5℃条件下肉鸡肝及血清中MDA含量分别升高32%和25%。高温诱导家禽氧化损伤可能与升高ROS产生量[7, 9],抑制抗氧化能力有关。杨晓岚等[24]发现,28~35℃日循环高温处理第14天时,蛋鸡血浆、肝SOD活性显著下降。刘凤华等[26]报道,27~38℃高温下蛋鸡血液和肝中SOD动态活性均降低。在本研究中,低循环温度组仅显著影响血清T-AOC水平,而高循环温度组显著降低肝、血清T-AOC水平以及血清GHS-Px活性,表明夏季高循环温度下机体的抗氧化能力受到抑制。在相同采食量的条件下,高循环温度组依然显著抑制蛋鸡抗氧化能力,提高MDA含量,表明高温诱导蛋鸡氧化应激与降低采食量无关。环境温度影响蛋鸡的体温[27],本研究发现,高循环温度组蛋鸡体核温度显著升高,而体外研究发现,提高培养温度可以诱导颗粒细胞ROS产生量升高[24],因此推测环境高温可能通过升高体温诱导氧化应激。

3.2 日循环高温对蛋鸡免疫机能的影响

IgA、IgG和IgM主要由浆细胞分泌,在机体特异性免疫中发挥重要作用。J.R.Bartlett和M.O.Smith[28]发现,23.9~35℃循环高温环境下,肉鸡血清中IgM、IgG水平显著下降。W.M.Quinteiro-Filho等[29]研究也表明,36℃高温环境下,肉鸡法氏囊、胸腺、脾脏指数均显著下降。M.M.Mashaly等[16]研究表明,23.9~35℃组显著升高蛋鸡血液异嗜性粒细胞和淋巴细胞比例(H/L),35℃持续高温组不仅显著提高血液H/L,并且显著降低血液抗体滴度,机体的免疫机能受到抑制。郝二英等[18]研究发现,35℃高温显著降低蛋鸡血液中IgA、IgM、IgG含量。本研究发现,即使在27~30℃低循环温度下,蛋鸡血清中IgA、IgM含量仍然显著降低,表明夏季蛋鸡舍内温度控制在30℃以下时,仍然会抑制蛋鸡的免疫机能。在自由采食条件下,高循环温度组显著降低血清IgA、IgM含量和脾脏指数,而在相同采食量条件下,夏季高循环温度对IgM含量和脾脏指数的影响不显著,表明高温导致采食量降低可能是抑制蛋鸡血清免疫球蛋白和脾脏指数下降的一个原因。

4 结论

夏季蛋鸡鸡舍温度在27~30℃波动时,蛋鸡血液和肝的抗氧化能力变化不明显,但血液中IgA和IgM含量显著降低;在29~35℃波动时,蛋鸡的体核温度显著升高,血液和肝的抗氧化能力显著降低,脾脏指数及血液中IgA和IgM含量显著降低。高温对蛋鸡抗氧化能力的影响可能与升高体温有关,对免疫机能的影响可能与降低采食量有关。

参考文献
[1] DENG W, DONG X F, TONG J M, et al. The probiotic Bacillus licheniformis ameliorates heat stress-induced impairment of egg production, gut morphology, and intestinal mucosal immunity in laying hens[J]. Poult Sci, 2012, 91(3): 575–582. DOI: 10.3382/ps.2010-01293
[2] FRANCO-JIMENEZ D J, SCHEIDELER S E, KITTOK R J, et al. Differential effects of heat stress in three strains of laying hens[J]. J Appl Poult Res, 2007, 16(4): 628–634. DOI: 10.3382/japr.2005-00088
[3] TEETER R G, BELAY T. Broiler management during acute heat stress[J]. Anim Feed Sci Technol, 1996, 58(1-2): 127–142. DOI: 10.1016/0377-8401(95)00879-9
[4] 李绍钰, 张敏红, 张子仪, 等. 热应激对肉用仔鸡生产性能及生理生化指标的影响[J]. 华北农学报, 2000, 15(3): 140–144.
LI S Y, ZHAGN M H, ZHANG Z Y, et al. Effect of heat stress on performance of broilers and some blood biological and endocrinological varibles[J]. Acta Agriculturae Boreali-Sinica, 2000, 15(3): 140–144. (in Chinese)
[5] 代雪立, 石达友, 雷淑珍, 等. 中药复方对高温下蛋鸡肝脏组织抗氧化功能的影响[J]. 畜牧与兽医, 2011, 43(11): 54–56.
DAI X L, SHI D Y, LEI S Z, et al. Effects of chinese herbal compound on antioxidant function of liver tissue in laying hens under high temperature[J]. Animal Husbandry & Veterinary Medicine, 2011, 43(11): 54–56. (in Chinese)
[6] LIN H, DECUYPERE E, BUYSE J. Acute heat stress induces oxidative stress in broiler chickens[J]. Comp Biochem Physiol Part A Mol Int Physiol, 2006, 144(1): 11–17. DOI: 10.1016/j.cbpa.2006.01.032
[7] LIN H, DE VOS D, DECUYPERE E, et al. Dynamic changes in parameters of redox balance after mild heat stress in aged laying hens (Gallus gallus domesticus)[J]. Comp Biochem Physiol Part C Toxicol Pharmacol, 2008, 147(1): 30–35. DOI: 10.1016/j.cbpc.2007.07.005
[8] DONKER R A, NEEUWLAND M G B, VAN DER ZIJPP A J. Heat-stress influences on antibody production in chicken lines selected for high and low immune responsiveness[J]. Poult Sci, 1990, 69(4): 599–607. DOI: 10.3382/ps.0690599
[9] FENG J, ZHANG M, ZHENG S, et al. Effects of high temperature on multiple parameters of broilers in vitro and in vivo[J]. Poult Sci, 2008, 87(10): 2133–2139. DOI: 10.3382/ps.2007-00358
[10] ALTAN Ö, PABUÇCUOĞLU A, ALTAN A, et al. Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers[J]. Br Poult Sci, 2003, 44(4): 545–550. DOI: 10.1080/00071660310001618334
[11] 王兰芳, 林海, 杨全明, 等. 日粮维生素A水平对免疫接种及热应激下蛋鸡脂质过氧化反应的影响[J]. 畜牧兽医学报, 2002, 33(5): 443–447.
WANG L F, LIN H, YANG Q M, et al. The effect of dietary vitamin A levels on lipid peroxidatic reaction of inoculated and heatstressed laying hens[J]. Acta Veterinaria et Zootechnica Sinica, 2002, 33(5): 443–447. (in Chinese)
[12] 林海, 杜荣. 热应激对肉鸡组织过氧化状态的影响[J]. 动物营养学报, 2001, 13(2): 30–32, 55.
LIN H, DU R. The effect of thermal environment on peroxidation of tissues in heat-stressed broilers[J]. Chinese Journal of Animal Nutrition, 2001, 13(2): 30–32, 55. (in Chinese)
[13] 范石军, 韩友文, 李德发, 等. 热应激对产蛋鸡自身及其后代机体组织的过氧化损伤以及抗氧化微营养素的调控效应[J]. 中国兽医学报, 2001, 21(2): 195–199.
FAN S J, HAN Y W, LI D F, et al. Regulative effect of adding anti-oxidative micro-nutrients to diets on the peroxidative damages of layers and their offsprings under acute ambient yemperature[J]. Chinese Journal of Veterinary Science, 2001, 21(2): 195–199. (in Chinese)
[14] 高玉鹏, 郭久荣, 刘斌峰. 热应激环境蛋鸡免疫力变化机理研究Ⅱ免疫力、氧自由基代谢、耐热力间的关系[J]. 西北农林科技大学学报:自然科学版, 2001, 29(05): 33–36.
GAO Y P, GUO J R, LIU B F. The study of layers on the immune feature and relation with HSSTⅡ Relationship among immunity, oxygen radixal metabolites, HSST[J]. Journal of Northwest A & F University, 2001, 29(05): 33–36. (in Chinese)
[15] HELLER E D, NATHAN D B, PEREK M. Short heat stress as an immunostimulant in chicks[J]. Avian Pathol, 1979, 8(3): 195–203. DOI: 10.1080/03079457908418345
[16] MASHALY M M, HENDRICKS G L III, KALAMA M A, et al. Effect of heat stress on production parameters and immune responses of commercial laying hens[J]. Poult Sci, 2004, 83(6): 889–894. DOI: 10.1093/ps/83.6.889
[17] ZULKIFLI I, NORMA M T C, ISRAF D A, et al. The effect of early age feed restriction on subsequent response to high environmental temperatures in female broiler chickens[J]. Poult Sci, 2000, 79(10): 1401–1407. DOI: 10.1093/ps/79.10.1401
[18] 郝二英, 陈辉, 赵宇, 等. 模拟冷热应激对蛋鸡生理生化指标的影响[C]//第七届(2015) 中国蛋鸡行业发展大会会刊. 成都: 中国畜牧业协会, 2015: 147-152.
HAO E Y, CHEN H, ZHAO Y, et al. Simulate the effects of ambient temperature stress on physiological and biochemical index in layers[C]. Seventh Journal of Hens Industry Development Conference in China, 2015:147-152. (in Chinese)
[19] TORKI M, MOHEBBIFAR A, GHASEMI H A, et al. Response of laying hens to feeding low-protein amino acid-supplemented diets under high ambient temperature:performance, egg quality, leukocyte profile, blood lipids, and excreta pH[J]. Int J Biometeorol, 2015, 59(5): 575–584. DOI: 10.1007/s00484-014-0870-0
[20] 王校帅, 吴武豪, 裘正军, 等. 湿帘降温蛋鸡舍内温湿度分布规律[C]//生态环境与畜牧业可持续发展学术研讨会暨中国畜牧兽医学会2012年学术年会和第七届全国畜牧兽医青年科技工作者学术研讨会会议论文集——T01畜舍环境与调控技术专题. 北京: 中国畜牧兽医学会, 2012.
WANG X S, WU W H, QIU Z J, et al. Distribution of temperature and relative humidity in a wet pad cooling laying hens house[C]//The academic seminar ecological environment and sustainable development of animal husbandry-Barns environment and regulation technology project, 2012. (in Chinese)
[21] 刘焕良. 高温条件下日粮不同代谢能和蛋白质水平对蛋鸡生产性能和蛋品质的影响[D]. 武汉: 华中农业大学, 2009.
LIU H L. Effeets of dietary metabolizable energy and protein levels on performance and egg quality of Hy-Line Brown layers under high temperature[D]. Wuhan:Huazhong Agricultural University, 2009. (in Chinese)
[22] 张妮娅, 刘焕良, 张金凤, 等. 华中地区夏季蛋鸡舍环境状况调查研究[J]. 养殖与饲料, 2008(12): 1–5.
ZHAGN N Y, LIU H L, ZHANG J F, et al. The research of environmental condition of laying hens during summer days in Central China[J]. Animals Breeding and Feed, 2008(12): 1–5. DOI: 10.3969/j.issn.1671-427X.2008.12.001 (in Chinese)
[23] 常玉, 张少帅, 彭骞骞, 等. 产蛋及喂料行为对蛋鸡体核和体表温度的影响[J]. 畜牧兽医学报, 2016, 47(10): 2045–2051.
CHANG Y, ZHANG S S, PENG Q Q, et al. Effects of oviposition and feeding behavior on core and skin temperature of laying hens[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(10): 2045–2051. (in Chinese)
[24] 杨晓岚, 张敏红, 冯京海, 等. 高温诱导蛋鸡氧化损伤及对卵泡发育的影响[J]. 中国农业科学, 2012, 45(16): 3391–3398.
YAGN X L, ZHANG M H, FEGN J H, et al. Influence of high temperature on oxidative damage and follicle development of laying hens[J]. Scientia Agricultura Sinica, 2012, 45(16): 3391–3398. DOI: 10.3864/j.issn.0578-1752.2012.16.019 (in Chinese)
[25] 李军乔. 高温环境对肉仔鸡血液生化指标、热应激蛋白(HSP72) 转录及肉品质的影响[D]. 保定: 河北农业大学, 2004.
LI J Q. Effect of high temperature environment on blood biochemical indicator, HSP72 transcription and meat quality of broiler[D]. Baoding:Hebei Agricultural University, 2004. (in Chinese)
[26] 刘凤华, 于同泉, 吴国娟, 等. 热应激中蛋鸡血液和肝脏SOD活性的动态变化[J]. 北京农学院学报, 2003, 18(2): 112–114.
LIU F H, YU T Q, WU G J, et al. Change on SOD in red cell and liver of laying hens in heat-stress[J]. Journal of Beijing Agricultural College, 2003, 18(2): 112–114. (in Chinese)
[27] TZSCHENTKE B, NICHELMANN M, POSTEL T. Effects of ambient temperature, age and wind speed on the thermal balance of layer-strain fowls[J]. Br Poult Sci, 1996, 37(3): 501–520. DOI: 10.1080/00071669608417881
[28] BARTLETT J R, SMITH M O. Effects of different levels of zinc on the performance and immunocompetence of broilers under heat stress[J]. Poult Sci, 2003, 82(10): 1580–1588. DOI: 10.1093/ps/82.10.1580
[29] QUINTEIRO-FILHO W M, RIBEIRO A, FERRAZ-DE-PAULA V, et al. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens[J]. Poult Sci, 2010, 89(9): 1905–1914. DOI: 10.3382/ps.2010-00812