畜牧兽医学报  2017, Vol. 48 Issue (6): 1000-1006. DOI: 10.11843/j.issn.0366-6964.2017.06.004    PDF    
Gab1和Sfmbt2基因在成年普通牛8种不同组织中的印记状态分析
王冠楠1, 赵宇鹏2, 陈玮娜3, 张萃1, 徐达1, 李冬杰4, 李世杰1     
1. 河北农业大学生命科学学院, 保定 071001;
2. 河北北方学院, 张家口 075000;
3. 河北大学中医系, 保定 071001;
4. 河北科技大学生物科学与工程学院, 石家庄 050018
摘要:旨在揭示Gab1(Grb2-associated binding protein 1)和Sfmbt2(Scm-like with four mbt domains 2)基因在牛不同组织以及胎盘中的印记状态,本研究应用基于单核苷酸多态性(Single nucleotide polymorphisms,SNP)的RT-PCR(Reverse transcription-PCR)产物直接测序方法对Gab1和Sfmbt2基因在牛7个组织(心、肝、脾、肺、肾、肌肉和脂肪)以及胎盘中的印记状态进行分析。结果显示,在被分析的7个组织和胎盘中均检测到Gab1和Sfmbt2基因的表达。通过比较杂合子牛基因组PCR扩增产物与RT-PCR扩增产物在SNP位点的测序峰图,发现Gab1和Sfmbt2在被检测的7个组织和胎盘中均为双等位基因表达,说明Gab1和Sfmbt2在牛的组织和胎盘中是非印记的。
关键词Gab1    Sfmbt2    印记状态    SNP        
Genomic Imprinting Status of Gab1 and Sfmbt2 in Different Tissues of Adult Cattle
WANG Guan-nan1, ZHAO Yu-peng2, CHEN Wei-na3, ZHANG Cui1, XU Da1, LI Dong-jie4, LI Shi-jie1     
1. College of Life Science, Hebei Agricultural University, Baoding 071001, China;
2. Hebei North University, Zhangjiakou 075000, China;
3. Department of Traditional Chinese Medicine, Hebei University, Baoding 071001, China;
4. College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
Abstract: In order to reveal the imprinting status of Gab1 (Grb2-associated binding protein 1) and Sfmbt2 (Scm-like with four mbt domains 2) in different tissues and placenta of bovine, in this study, we analyzed the imprinting status of Gab1 and Sfmbt2 in 7 bovine tissues (heart, liver, spleen, lung, kidney, muscle and fat) and placenta by direct sequencing the RT-PCR products based on single nucleotide polymorphisms.The result displayed that Gab1 and Sfmbt2 were all expressed in 7 tissues and placenta.We discovered that Gab1 and Sfmbt2 were bi-allelic expressed by comparing sequence chromatograms of RT-PCR products and genomic PCR products at single nucleotide polymorphisms sites, suggesting that Gab1 and Sfmbt2 were not imprinted in adult cattle tissues and placenta.
Key words: Gab1     Sfmbt2     imprinting status     SNP     cattle    

基因组印记(Genomic imprinting)是一种表观遗传学现象,是指一些基因在哺乳动物的发育过程中的表达具有亲本选择性,即只有来源于父本的等位基因或来源于母本的等位基因表达,而另一等位基因不表达的现象[1]。印记基因不仅调控胚胎和胎盘的生长,还会影响动物出生后的发育,与后期某些疾病的发生有关[2-3]。印记基因表达剂量的紊乱还与人类的多种先天性疾病(包括Prader-Willi,Angelman和Beckwith-Wiedemann综合征)以及癌症的发生和发展有关[4]

印记基因通常成簇存在,而Gab1(Grb2-associated binding protein binder 1) 和Sfmbt2(Scm-like with four mbt domains 2) 是在鼠中发现的2个独立存在的父源等位基因表达的印记基因,分别定位于鼠染色体8C3 (小鼠中期染色体区,8号染色体C区第3条带)和2号染色体近端[5-6]。Gab1作为一种分布广泛的接头蛋白,能够被多种生长因子和细胞因子激活,可能在PI3K/Akt信号通路中扮有重要角色[7-8]Sfmbt2基因是一个多梳基因(Polycomb group, PcG),编码染色质调节蛋白[9],在许多基因的表观遗传调控中起重要作用。目前,在牛中针对的研究很少,本研究主要对Gab1和Sfmbt2基因在牛组织和胎盘中的印记状态进行分析,为研究Gab1和Sfmbt2基因的功能奠定基础。

1 材料与方法 1.1 试验动物

32头成年的荷斯坦奶牛(均为雌性)经屠宰后,立即采取各个体的组织(心、肝、脾、肺、肾、肌肉和脂肪)装入有编号的采样袋中,放入液氮中,-70 ℃保存。

采集30头成年荷斯坦奶牛正常分娩后的胎盘,装入采样袋中,液氮运输,-70 ℃保存。

1.2 试验方法 1.2.1 RNA的提取及反转录

利用RNAios plus试剂盒(TaKaRa,中国)提取组织的总RNA,加入无RNA酶的DNase-Ⅰ,去除可能的DNA污染,保存于-70 ℃。利用TransGen反转录试剂盒(全式金,中国)将总RNA反转录成cDNA。反应体系中加入大约1 μg的RNA,1 μL的Oligo(dT)引物,10 μL 2×ES Reaction Mix,1 μL RT Enzyme Mix,1 μL gDNA Remover,用无RNase-free Water补足体系至20 μL。反转录过程按照说明书进行,Oligo(dT)和反转录酶RT Enzyme Mix引导合成cDNA,gDNA Remover进一步去除基因组DNA。反应之前,先将模板RNA、引物Oligo(dT)和RNase-free Water混匀,65 ℃孵育5 min,打开RNA二级结构。随后加入反转录酶RT Enzyme Mix,2×ES Reaction Mix和gDNA Remover,42 ℃进行30 min,85 ℃终止反应。-20 ℃保存。

1.2.2 RT-PCR分析等位基因表达

通过NCBI(https://www.ncbi.nlm.nih.gov/)查找牛Gab1 mRNA序列(Accession No.: NM_001101201.1) 和Sfmbt2 mRNA序列(Accession No.: NM_001205956.1)。利用Primer 5软件对2个基因设计引物(表 1)扩增来源于试验动物各个组织的cDNA。利用1对跨内含子的引物(表 1)Gap-F和Gap-R扩增一段375 bp大小的GAPDH(Accession No.: BTU85042) 片段作为内参。25 μL PCR反应体系:2.5 μL 10×LA Taq Buffer,2 μL 2.5 mmol·L-1 dNTPs,0.1 μL LA Taq DNA聚合酶,上下游引物(10 μmol·L-1)各1 μL,模板1 μL(50 ng),补充ddH2O至25 μL。扩增条件:94 ℃预变性5 min;94 ℃变性30 s,55 ℃退火30 s,72 ℃延伸30 s,30个循环;72 ℃延伸10 min。扩增产物用1.5%琼脂糖凝胶电泳进行检测。

表 1 所用引物序列 Table 1 Primer sequences used in the study
1.2.3 DNA的提取及SNP的鉴定

利用DNA提取试剂盒(生工,中国)提取32头荷斯坦奶牛的肝组织和30头荷斯坦奶牛胎盘的DNA。利用Primer 5软件设计的引物(表 1)分别扩增Gab1和Sfmbt2基因的DNA。PCR反应体系和反应条件与RT-PCR(1.2.2) 相同,其中模板为32头牛肝组织的DNA。扩增产物用E.Z.N.A Gel-胶回收试剂盒(Omega,美国)纯化回收,送华大基因公司测序。利用Chromas查看峰图,如果存在有效重叠峰,即为杂合子个体。

1.2.4 Gab1和Sfmbt2基因印记状态分析

杂合子牛的组织(心、肝、脾、肺、肾、肌肉和脂肪)和胎盘用于等位基因特异的表达分析。将杂合子牛的RNA反转录成cDNA,以cDNA为模板扩增Gab1和Sfmbt2目的片段,反应体系和反应条件与1.2.2部分的RT-PCR相同。扩增产物纯化回收,测序。利用Chromas查看SNP位点的峰图,如果为双峰,则为双等位基因表达;若为单峰则为单等位基因表达。

2 结果 2.1 Gab1和Sfmbt2基因在牛7个组织中的表达

应用RT-PCR方法检测Gab1和Sfmbt2基因在牛7个组织中的表达。随机提取3头牛7个组织(心、肝、脾、肺、肾、肌肉和脂肪)的RNA,以反转录生成的cDNA为模板,用Gab1引物(F2和R2) 和Sfmbt2引物(F2和R2) 进行扩增,分别得到828和572 bp大小的片段(图 1A)。在被分析的7个组织中均能检测到Gab1和Sfmbt2基因的表达。Gab1基因在心、肝、脾、肺、肾和肌肉6个组织中表达量很高,在脂肪中表达很弱,而Sfmbt2基因在7个组织中表达量都较低。

A.Gab1和Sfmbt2在牛7个组织中的表达水平:1~7.心、肝、脾、肺、肾、肌肉和脂肪;M.DNA相对分子质量标准(DL2000: 2 000,1 000,750,500,250,100 bp);RT-.阴性对照。B.牛基因组中Gab1和Sfmbt2基因SNPs的鉴定,箭头位置为SNP位置。C.杂合子牛心、肝、脾、肺、肾、肌肉和脂肪的RT-PCR测序峰图,箭头位置为SNP位置 A.The expression levels of Gab1 and Sfmbt2 in different tissues in cattle: 1-7. RT-PCR products obtained from heart, liver, spleen, lung, kidney, muscle and fat; M. DNA marker DL2000 (2 000, 1 000, 750, 500, 250, 100 bp); RT-. Negative control. B. Identification of SNPs in bovine Gab1 and Sfmbt2 genes, the arrows point the position of SNP. C. Sequence chromatograms of RT-PCR products obtained from 7 tissues of hybrid cattle, including heart, liver, spleen, lung, kidney, muscle and fat, the arrows point the position of SNP 图 1 Gab1和Sfmbt2在不同组织中的表达及印记状态 Figure 1 Expression and imprinting status of Gab1 and Sfmbt2 in different tissues of adult cattle
2.2 Gab1和Sfmbt2在牛组织中的等位基因特异的表达分析 2.2.1 牛组织中SNP的检测

Gab1(F1和R1) 和Sfmbt2(F1和R1) 引物对32头牛的基因组进行PCR扩增,分别得到621和490 bp的PCR产物并直接回收测序。分析测序峰图,在Gab1基因扩增产物的407 bp处存在1个A>G SNP(rs110004638),在Sfmbt2基因扩增产物的176 bp处存在1个G>A SNP(rs209028760)(图 1B)。鉴定出的杂合子牛用于Gab1(n=4) 和Sfmbt2(n=3) 基因在牛组织中等位基因特异的表达分析。

2.2.2 Gab1和Sfmbt2在牛组织中的等位基因特异的表达分析

通过对比杂合子牛基因组扩增产物和cDNA扩增产物在SNP位点处的测序峰图,确定Gab1和Sfmbt2基因在不同组织中等位基因特异的表达状态。结果显示,Gab1和Sfmbt2基因在7个被检测的组织中均为双峰(图 1C),即Gab1和Sfmbt2为双等位基因表达,是非印记的。

2.3 Gab1和Sfmbt2在牛胎盘组织中等位基因特异的表达分析 2.3.1 牛胎盘组织中SNP的检测

Gab1引物(F1和R1) 和Sfmbt2 (F3和R3) 两对引物分别对牛胎盘组织的基因组进行PCR扩增,得到621和676 bp的扩增产物,回收产物并直接测序。分析测序峰图发现,在Gab1基因扩增产物的407 bp处存在1个A>G SNP(rs110004638),在Sfmbt2基因扩增产物的203 bp处存在1个T>C SNP(rs41681733)(图 2B)。在30个牛胎盘样本中包括3个Gab1基因杂合子和4个Sfmbt2基因杂合子,所有杂合子牛胎盘用于Gab1和Sfmbt2基因在胎盘组织中等位基因的特异性表达分析。

A. Gab1和Sfmbt2在杂合子牛胎盘组织中的表达水平:1~3和1~4分别是Gab1和Sfmbt2在不同杂合牛个体胎盘组织中的表达情况;M.DNA相对分子质量标准(DL2000: 2 000,1 000,750,500,250,100 bp);RT-.阴性对照。B.牛Gab1和Sfmbt2基因中SNPs的鉴定,箭头位置为SNP位置。C.杂合子牛胎盘组织的RT-PCR测序峰图,箭头位置为SNP位置 A. The expression levels of Gab1 and Sfmbt2 in placenta in hybrid cattle: 1-3 and 1-4. RT-PCR products of Gab1 and Sfmbt2 obtained from placenta in hybrid cattle; M. DNA marker DL2000 (2 000, 1 000, 750, 500, 250, 100 bp); RT-. Negative control. B. Identification of SNPs in bovine Gab1 and Sfmbt2 genes, the arrows point the position of SNP. C. Sequence chromatograms of RT-PCR products obtained from placenta in hybrid cattle, the arrows point the position of SNP 图 2 Gab1和Sfmbt2在胎盘中的表达及印记状态 Figure 2 Expression and imprinting status of Gab1 and Sfmbt2 in placenta of adult cattle
2.3.2 Gab1和Sfmbt2在牛胎盘组织中等位基因特异的表达分析

提取杂合子牛胎盘组织的RNA,将其反转录成的cDNA作为模板,用引物Gab1(F2和R2) 和Sfmbt2引物(F4和R4) 进行PCR扩增,分别得到828 bp的Gab1和524 bp的Sfmbt2的扩增产物(图 2A),经测序验证扩增产物为目的片段。分析扩增产物在SNP位点处的测序峰图,发现Gab1和Sfmbt2基因在所有杂合个体的胎盘组织中均为双峰(图 2C),即Gab1和Sfmbt2在胎盘组织中为双等位基因表达,是非印记的。

3 讨论

Gab1作为多种受体酪氨酸激酶信号传导介质,调节多个信号多条信号转导途径[10]。缺失Gab1基因的小鼠胚胎在出生前死亡,并表现出心、胎盘和皮肤的发育异常[11]Gab1在单性生殖囊胚中的表达水平低于受精的胚胎[12]。本研究发现,Gab1在成年牛的组织中是非印记的。这与Gab1在小鼠的胚胎组织卵黄囊以及成年组织中不印记的结果相类似[5]Sfmbt2基因是一个PcG基因,编码的SFMBT蛋白具有MBT(Malignant brain tumor)结构域,MBT通过识别并结合组蛋白H3和H4中甲基化的赖氨酸残基,维持染色质的抑制状态,从而调控基因的表达[13-14]。最近有研究表明,Sfmbt2不仅在前列腺癌细胞的生长中起重要作用[15],还能够负调控癌细胞的迁移和侵袭[16]。在大鼠和小鼠的早期胚胎中,Sfmbt2是印记的,表现为父源等位基因表达,在7.5 d后的组织中印记丢失[6]。本研究发现,Sfmbt2在成年牛的组织中是非印记的。这与前期对Sfmbt2在牛囊胚中印记状态的研究结果相一致[17]

基因组印记是在哺乳动物进化过程中产生的,与胎盘的发育和功能直接相关[2, 18]。印记基因在胎盘的发育中起重要作用[19-20]。许多的印记基因在胎盘中表达,调控胎儿的营养供给[21-24]Gab1在胎盘的发育过程中也起重要作用[11, 25]Gab1的缺失会造成迷宫区滋养层细胞数量的减少,导致胎盘体积减小[11]。在克隆鼠胎盘中,Gab1和Sfmbt2基因的过表达可能与胎盘的肥大症有关[26]。父源等位基因表达的Sfmbt2在滋养层的维持和胎盘的发育过程中起重要作用[27],鼠2号染色体近端父源等位基因加倍引起Sfmbt2基因过表达,会导致胎盘肥大(Placentomegaly)[28]。本研究发现,Gab1和Sfmbt2基因在牛的胎盘中都为双等位基因表达,是不印记的,这与Gab1和Sfmbt2基因在人的胎盘中的表达相类似。在大鼠和小鼠Sfmbt2基因第10内含子中,插入了一个miRNAs簇,而在人和牛的Sfmbt2中,没有相应的miRNAs簇,因而鼠中Sfmbt2基因印记的获得可能与miRNAs簇的插入相关[17]

4 结论

本研究发现,Gab1和Sfmbt2在被检测的7个组织和胎盘中均为双等位基因表达,说明Gab1和Sfmbt2在牛的组织和胎盘中是非印记的。

参考文献
[1] BARLOW D P, BARTOLOMEI M S. Genomic imprinting in mammals[J]. Cold Spring Harb Biol, 2014, 6(2): a018382. DOI: 10.1101/cshperspect.a018382
[2] REIK W, CONSTÂNCIA M, FOWDEN A, et al. Regulation of supply and demand for maternal nutrients in mammals by imprinted genes[J]. J Physiol, 2003, 547(1): 35–44. DOI: 10.1113/jphysiol.2002.033274
[3] WATERLAND R A, JIRTLE R L. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases[J]. Nutrition, 2004, 20(1): 63–68. DOI: 10.1016/j.nut.2003.09.011
[4] PETERS J. The role of genomic imprinting in biology and disease: an expanding view[J]. Nat Rev Genet, 2014, 15(8): 517–530. DOI: 10.1038/nrg3766
[5] OKAE H, HIURA H, NISHIDA Y, et al. Re-investigation and RNA sequencing-based identification of genes with placenta-specific imprinted expression[J]. Hum Mol Genet, 2012, 21(3): 548–558. DOI: 10.1093/hmg/ddr488
[6] KUZMIN A, HAN Z M, GOLDING M C, et al. The PcG gene Sfmbt2 is paternally expressed in extraembryonic tissues[J]. Gene Expr Patterns, 2008, 8(2): 107–116. DOI: 10.1016/j.modgep.2007.09.005
[7] WON J K, YANG H W, SHIN S Y, et al. The crossregulation between ERK and PI3K signaling pathways determines the tumoricidal efficacy of MEK inhibitor[J]. J Mol Cell Biol, 2012, 4(3): 153–163. DOI: 10.1093/jmcb/mjs021
[8] MOURADIAN M, KIKAWA K D, JOHNSON E D, et al. Key roles for GRB2-associated-binding protein 1, phosphatidylinositol-3-kinase, cyclooxygenase 2, prostaglandin E2 and transforming growth factor alpha in linoleic acid-induced upregulation of lung and breast cancer cell growth[J]. Prostaglandins Leukot Essent Fatty Acids, 2014, 90(4): 105–115. DOI: 10.1016/j.plefa.2013.12.001
[9] KLYMENKO T, PAPP B, FISCHLE W, et al. A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities[J]. Genes Dev, 2006, 20(9): 1110–1122. DOI: 10.1101/gad.377406
[10] NISHIDA K, HIRANO T. The role of Gab family scaffolding adapter proteins in the signal transduction of cytokine and growth factor receptors[J]. Cancer Sci, 2003, 94(12): 1029–1033. DOI: 10.1111/cas.2003.94.issue-12
[11] ITOH M, YOSHIDA Y, NISHIDA K, et al. Role of Gab1 in heart, placenta, and skin development and growth factor-and cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation[J]. Mol Cell Biol, 2000, 20(10): 3695–3704. DOI: 10.1128/MCB.20.10.3695-3704.2000
[12] LIU N, ENKEMANN S A, LIANG P, et al. Genome-wide gene expression profiling reveals aberrant MAPK and Wnt signaling pathways associated with early parthenogenesis[J]. J Mol Cell Biol, 2010, 2(6): 333–344. DOI: 10.1093/jmcb/mjq029
[13] WU S M, TRIEVEL R C, RICE J C. Human SFMBT is a transcriptional repressor protein that selectively binds the N-terminal tail of histone H3[J]. FEBS Lett, 2007, 581(17): 3289–3296. DOI: 10.1016/j.febslet.2007.06.025
[14] GRIMM C, MATOS R, LY-HARTIG N, et al. Molecular recognition of histone lysine methylation by the Polycomb group repressor dSfmbt[J]. EMBO J, 2009, 28(13): 1965–1977. DOI: 10.1038/emboj.2009.147
[15] LEE K, NA W, MAENG J H, et al. Regulation of DU145 prostate cancer cell growth by Scm-like with four mbt domains 2[J]. J Biosci, 2013, 38(1): 105–112. DOI: 10.1007/s12038-012-9283-6
[16] GWAK J, SHIN J Y, LEE K, et al. SFMBT2 (Scm-like with four mbt domains 2) negatively regulates cell migration and invasion in prostate cancer cells[J]. Oncotarget, 2016, 7(30): 48250–48264.
[17] WANG Q W, CHOW J, HONG J, et al. Recent acquisition of imprinting at the rodent Sfmbt2 locus correlates with insertion of a large block of miRNAs[J]. BMC Genomics, 2011, 12(1): 204. DOI: 10.1186/1471-2164-12-204
[18] FERGUSON-SMITH A C, SURANI M A. Imprinting and the epigenetic asymmetry between parental genomes[J]. Science, 2001, 293(5532): 1086–1089. DOI: 10.1126/science.1064020
[19] TRASLER J M. Epigenetics in spermatogenesis[J]. Mol Cell Endocrinol, 2009, 306(1-2): 33–36. DOI: 10.1016/j.mce.2008.12.018
[20] NELISSEN E C M, VAN MONTFOORT A P A, DUMOULIN J C M, et al. Epigenetics and the placenta[J]. Hum Reprod Update, 2011, 17(3): 397–417. DOI: 10.1093/humupd/dmq052
[21] TYCKO B. Imprinted genes in placental growth and obstetric disorders[J]. Cytogenet Genome Res, 2006, 113(1-4): 271–278. DOI: 10.1159/000090842
[22] WAGSCHAL A, FEIL R. Genomic imprinting in the placenta[J]. Cytogenet Genome Res, 2006, 113(1-4): 90–98. DOI: 10.1159/000090819
[23] MIRI K, VARMUZA S. Imprinting and extraembryonic tissues—mom takes control[J]. Int Rev Cell Mol Biol, 2009, 276: 215–262. DOI: 10.1016/S1937-6448(09)76005-8
[24] BRESSAN F F, DE BEM T H C, PERECIN F, et al. Unearthing the roles of imprinted genes in the placenta[J]. Placenta, 2009, 30(10): 823–834. DOI: 10.1016/j.placenta.2009.07.007
[25] SCHAEPER U, VOGEL R, CHMIELOWIEC J, et al. Distinct requirements for Gab1 in Met and EGF receptor signaling in vivo[J]. Proc Natl Acad Sci U S A, 2007, 104(39): 15376–15381. DOI: 10.1073/pnas.0702555104
[26] OKAE H, MATOBA S, NAGASHIMA T, et al. RNA sequencing-based identification of aberrant imprinting in cloned mice[J]. Hum Mol Genet, 2014, 23(4): 992–1001. DOI: 10.1093/hmg/ddt495
[27] MIRI K, LATHAM K, PANNING B, et al. The imprinted polycomb group gene Sfmbt2 is required for trophoblast maintenance and placenta development[J]. Development, 2013, 140(22): 4480–4489. DOI: 10.1242/dev.096511
[28] CATTANACH B M, BEECHEY C V PETERS J. Interactions between imprinting effects in the mouse[J]. Genetics, 2004, 168(1): 397–413. DOI: 10.1534/genetics.104.030064