畜牧兽医学报  2017, Vol. 48 Issue (5): 863-870. DOI: 10.11843/j.issn.0366-6964.2017.05.010    PDF    
限饲对湖羊子宫RGMb基因及BMP系统成员表达的影响
邝美倩1, 金鹏锦1, 王若丞1, 孙玲伟2, 王锋2, 李鹏3, 成志军3, 茆达干1     
1. 南京农业大学动物科技学院, 南京 210095;
2. 江苏省肉羊产业工程技术研究中心, 南京 210095;
3. 启东瑞鹏牧业有限公司, 南通 226227
摘要:本研究旨在探讨限饲对湖羊子宫RGMb基因及BMP系统成员表达的影响。首先应用qPCR检测RGMb mRNA在3月龄湖羊机体的组织表达谱,应用IHC检测RGMb在子宫中的定位。然后选取妊娠35 d湖羊分为两组,对照组(C)饲喂100% NRC日粮,限饲组(R)饲喂50% NRC日粮,妊娠110天取其子宫组织(n=8),应用qPCR和Western blotting(WB)检测BMP2、BMP4、BMPR1A、BMPR1B、BMPR2与RGMb的表达。结果,RGMb mRNA在湖羊机体的14种组织中均表达,且在子宫的相对表达量大于0.5。湖羊子宫RGMb主要定位于腔上皮与腺上皮细胞。RGMb蛋白在限饲组(R)湖羊子宫中的表达较对照组(C)显著下降(P < 0.05),但mRNA水平则无显著变化(P>0.05);限饲组(R)湖羊子宫中的BMP2与BMP4 mRNA水平较对照组(C)显著上升(P < 0.05),而BMP受体BMPR1A、BMPR1B与BMPR2 mRNA水平较对照组显著下降(P < 0.05)。限饲影响子宫组织BMP系统成员尤其是RGMb蛋白的表达,提示RGMb可能参与BMP系统对湖羊子宫稳态的调控,为进一步研究BMP在子宫中的作用机制提供了试验依据。
关键词RGMb    BMP    限饲    湖羊    子宫    
Effect of Food Restriction on the Expression of RGMb and BMP System Members in the Uterus of Hu Ewes
KUANG Mei-qian1, JIN Peng-jin1, WANG Ruo-cheng1, SUN Ling-wei2, WANG Feng2, LI Peng3, CHENG Zhi-jun3, MAO Da-gan1     
1. College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
2. Jiangsu Engineering Technology Research Center of Mutton Sheep & Goat Industry, Nanjing 210095, China;
3. Qidong Ruipeng Animal Husbandry Co., Ltd, Nantong 226227, China
Abstract: The study aimed to explore the effects of food restriction on the expression of RGMb and BMP system members in the uterus of Hu ewes. Firstly, qPCR were applied to investigate the RGMb expression profile in different tissues of 3-month-old Hu ewes, IHC were used to detect the expression of RGMb in uterus. Then Hu ewes on 35 days of pregnancy (d35) were divided into 2 groups: ewes in the control (C) group were fed with 100% NRC and ewes in the restriction (R) group were fed with 50% NRC. On 110 days of pregnancy, uterine tissues (n=8) were collected to evaluate the expression of BMP2, BMP4, BMPR1A, BMPR1B, BMPR2 and RGMb by qPCR and WB. qPCR results showed that RGMb mRNA were detected in 14 tissues of 3-month-old Hu ewes, and the relative expression was greater than 0.5 in uterus. IHC staining showed that RGMb protein were mainly expressed in the endometrial luminal and glandular epithelial cells of Hu ewes. The uterine expression of RGMb protein in the R group was significantly lower (P < 0.05) than that in the C group, while there was no significant differences in RGMb mRNA abundance(P>0.05). The expression of BMP4 and BMP2 mRNAs in the R group were higher (P < 0.05) than those in the C group. However, the expression of BMP receptors(BMPR1A, BMPR1B and BMPR2) significantly decreased in the R group(P < 0.05). The results indicate that food restriction affect the expression of BMP system members, including the RGMb, suggesting RGMb accompanied with BMP system may be involved in the regulation of uterine hemeostasis, which will set up experimental evidences for the further study on the regulation mechanism of BMP system in the uterus.
Key words: RGMb     BMP     food restriction     Hu ewes     uterus    

骨形态发生蛋白(Bone morphogenetic proteins, BMPs)系统在动物的生长、发育和繁殖过程中起着重要作用[1-3]。J. A.Visser与L. Gouédard等[4-5]研究指出,胚胎将与子宫产生关联时,子宫内膜间质细胞中的BMP2表达量上升,胚胎着床后的BMP2也持续表达。BMP信号通路的受体BMPR1B基因敲除的小鼠子宫形态结构遭到严重的破坏,子宫内腺体的形成受阻[6]。研究表明,BMP2、BMP4及其受体BMPR1B在小鼠发情周期的子宫中亦呈细胞特异性与阶段特异性表达[3]

RGMb(Repulsive guidance molecule b)是排斥导向分子(RGM)家族的成员之一,广泛表达于神经系统、消化系统及生殖系统[7],作为BMP2和BMP4的辅助受体,可增强BMP信号通路的转导。S.Yura等[8]研究表明,RGMb和BMP通路的功能元件在小鼠生殖轴上共表达,可调节细胞和组织水平BMP信号转导。本课题组[9]前期试验表明,RGMb在大鼠发情周期的子宫而非卵巢中呈细胞和阶段特异性表达,同时子宫中RGMb蛋白的表达受到外源类固醇激素的影响。尽管有研究表明,定点敲除小鼠卵巢与睾丸中的RGMb基因并不影响卵巢与睾丸的机能[10],但RGMb在子宫中的作用尚不清楚。

产于中国江浙沪太湖流域的湖羊是世界著名的多胎绵羊品种。为了探讨湖羊的多胎性能,研究人员从激素分泌[11]、多胎基因[12]与子宫内环境[13]等方面进行了研究。笔者近期研究表明,对妊娠湖羊进行50%限饲处理导致羔羊宫内发育迟缓[14]。多数研究表明,限饲可影响动物的子宫和胎盘功能,引起胚胎宫内发育迟缓[15-16]。因此本研究首先分析3月龄湖羊的RGMb组织表达谱,同时分析不同发育阶段湖羊子宫中RGMb的表达定位;然后以妊娠母羊为对象,研究限饲对子宫RGMb和BMP及其受体表达的影响,为深入研究RGMb参与湖羊子宫机能调控提供试验依据。

1 材料与方法 1.1 试验动物

组织表达谱试验选取体重相近的3月龄湖羊(体重为(21.01±0.30) kg)3只,屠宰后收集卵巢、垂体、下丘脑、心、脾、肾、肝、嗅脑、大脑、小脑、脑桥、子宫角、乳腺、松果体、视网膜共15种组织样品,于液氮保存。

限饲试验选取生理状态相似的18月龄湖羊30只(体重为(40.1±1.2) kg),单栏饲养,放置阴道栓(30 mg;Pharmp PTY,Herston City,Australi)诱导同期发情,人工授精(授精当日为妊娠第0天)。在妊娠第35天通过B超监测,选取怀双羔的母羊(16只)分为2组:对照组饲喂100% NRC日粮;限饲组饲喂50% NRC日粮[14]。于妊娠第110天采集子宫组织样品(n=8)。部分组织置于4%对聚甲醛中固定,部分组织置于液氮中保存。

1.2 实时荧光定量

参照C.L.Meng等[17]的方法,应用Trizol(Invitrogen)提取子宫组织总RNA,利用反转录试剂盒(TaKaRa,RR036A)对总RNA进行反转录,利用定量试剂盒(TaKaRa,RR420A)进行qPCR。引物由上海英骏生物技术有限公司合成,序列见表 1。采用ΔΔCt=(Ct目的基因-Ct内参基因)法计算基因的相对表达量。

表 1 qPCR引物 Table 1 Primers used for qPCR
1.3 免疫组织化学

参照N.N.Guo等[18]的方法对3月龄、7月龄黄体期和妊娠110 d的子宫组织制作常规石蜡切片,检测子宫组织中RGMb的表达。RGMb抗体(abcam,ab96727) 以1:200进行稀释,阴性对照采用BSA替代一抗。应用Nikon摄像机拍照分析。

1.4 蛋白免疫印迹分析

参照Q.W.Wei等[19]的方法对妊娠110 d湖羊子宫组织提取总蛋白进行免疫印迹分析。RGMb与GAPDH(碧云天)抗体均以1:1 000稀释。利用Kodak Digital Sciences Image Station 440 (Eastman Kodak,Rochester,NY,USA)对目的条带显影摄像,使用Image J软件对目的条带进行分析。

1.5 数据分析

应用GapdhPad5.0软件对数据进行分析。所有数据以“平均数±标准误”表示,采用t检验进行差异显著性分析,不同字母表示差异显著(P < 0.05)。

2 结果 2.1 RGMb mRNA在湖羊机体不同组织中的表达

应用实时定量PCR技术检测3月龄湖羊RGMb基因在包括生殖系统在内的15种组织中的相对表达量(图 1)。以下丘脑组织中的相对表达量为1,RGMb在心、大脑和视网膜的表达量大于1,在小脑、子宫、乳腺和松果体的相对表达量介于0.5与1之间,而在剩余的垂体、卵巢等7种组织的相对表达量低于0.5,在脾中几乎不表达。

图 1 qPCR检测RGMb在3月龄湖羊机体组织中的表达 Figure 1 RGMb expression in different tissues of 3-month-old Hu ewes detected by qPCR
2.2 RGMb蛋白在湖羊子宫组织中的定位

应用免疫组织化学技术检测RGMb在性成熟前(3月龄)、性成熟后黄体期(7月龄)和妊娠期湖羊(110 d)子宫组织中的表达模式(图 2A2B2C)。观察不同阶段湖羊子宫形态发现,子宫内膜腺体随着年龄增加也逐渐变大,直至妊娠期达到最大。免疫组化结果显示,RGMb在3月龄(图 2A)、7月龄(图 2B)与妊娠期(图 2C)湖羊子宫的腔上皮(图 2C-g)和腺上皮(图 2C-f)细胞中均为强表达,在各个阶段湖羊子宫的环形肌层亦有弱表达(图 2C-h)。

A.3月龄;B.7月龄黄体期;C.妊娠110 d。b,f.腺上皮(GEC);c,g.腔上皮(LEC);d,h.肌环。NC.阴性对照; RG. RGMb A. 3-month-old; B.Luteal phase of 7-month-old; C. Pregnant D110.b, f.Glandular epithelial cells; c, g. Luminal epithelial cells; d, h. Circle muscle. NC. Negative control; RG. RGMb 图 2 RGMb在3月龄、7月龄及妊娠时期湖羊子宫中的定位 Figure 2 Localization of RGMb protein in the uterus of 3-month-old, 7-month-old and pregnant Hu ewes
2.3 限饲对湖羊子宫RGMb蛋白和mRNA水平表达的影响

应用实时定量PCR与WB技术检测限饲对妊娠湖羊子宫组织RGMb mRNA与蛋白水平的影响。结果发现,限饲对RGMb mRNA相对表达量无显著影响(P>0.05,图 3A),但限饲显著降低了RGMb蛋白的表达量(P < 0.05,图 3B)。

A.RGMb mRNA表达量;B. RGMb蛋白表达量。不同字母表示差异显著(P < 0.05),下同 A. Relative expression of RGMb mRNA; B. Relative expression of RGMb protein. Bars with different letters are significantly different (P < 0.05), the same as below 图 3 限饲对妊娠湖羊子宫RGMb蛋白和mRNA表达的影响 Figure 3 Effect of food restriction on uterine expression of RGMb protein and mRNA in pregnant Hu ewes
2.4 限饲对湖羊子宫BMP2和BMP4 mRNA表达的影响

BMP2与BMP4是BMP系统中的重要成员,参与调控动物生长发育过程,且在维持雌性动物子宫稳态中发挥着重要的作用。应用实时定量PCR技术检测湖羊子宫组织BMP2和BMP4 mRNA的表达。结果显示,与对照组相比,限饲组中BMP2与BMP4 mRNA表达量显著上升(P < 0.05,图 4A4B)。

A.BMP2相对表达量;B.BMP4相对表达量 A. Relative expression of BMP2; B. Relative expression of BMP4 图 4 限饲对妊娠湖羊子宫BMP2和BMP4 mRNA表达的影响 Figure 4 Effect of food restriction on uterine expression of BMP2 and BMP4 mRNA in pregnant Hu ewes
2.5 限饲对湖羊子宫BMP受体mRNA表达的影响

BMP受体可分为Ⅰ类与Ⅱ类受体,BMPR1A与BMPR1B属于Ⅰ类受体,BMPR2属于Ⅱ类受体。应用实时定量PCR技术检测湖羊子宫组织受体BMPR1A、BMPR1B和BMPR2 mRNA的表达。与对照组相比,限饲组中的BMPR1A、BMPR1B与BMPR2 mRNA表达水平均显著降低(P < 0.05,图 5A5B5C)。

A.BMPR1A相对表达量;B.BMPR1B相对表达量;C.BMPR2相对表达量 A. Relative expression of BMPR1A; B. Relative expression of BMPR1B; C. Relative expression of BMPR2 图 5 限饲对妊娠湖羊子宫BMP受体mRNA表达的影响 Figure 5 Effect of food restriction on uterine mRNA expression of BMP receptors in pregnant Hu ewes
3 讨论

T.A.Samad等[20]于2005年指出RGMb是BMP信号通路的辅助受体。同年,Y.Xia等[21]指出,RGMb在生殖系统的多种细胞中有表达,如睾丸生精细胞、卵巢初级卵母细胞等。本课题组对雄性湖羊的研究发现RGMb在生殖系统中表达量较高[22]。本试验以限饲湖羊为模型,探讨RGMb与BMP信号通路在湖羊子宫组织中的潜在作用。

作为BMP2与4的辅助受体,RGMb可以增强BMP的信号,促进细胞低水平配体的敏感性[23]。本研究中,RGMb在3月龄湖羊的14种不同组织(脾中未检测到)中均有表达,在心、大脑、视网膜表达量高,与已报道的RGMb在心血管、中枢神经等系统中参与重要的生理与病理过程[7, 21, 24]一致。RGMb在子宫组织中的相对表达量大于0.5,笔者前期的研究表明,RGMb在大鼠子宫有表达,且其表达量随发情周期的不同阶段而变化[17]。因此,RGMb基因可能对雌性湖羊的生殖活动具有重要的调控作用。

为了证实RGMb在湖羊子宫中的表达,我们应用IHC对不同阶段湖羊子宫中的RGMb定位进行了研究。结果发现,湖羊子宫RGMb主要定位于腔上皮和腺上皮细胞,在环形肌层有弱表达,这与先前大鼠子宫中的定位结果一致[17]。子宫RGMb在性成熟前(3月龄)、性成熟后(7月龄)与妊娠阶段(18月龄)的细胞定位模式一致,这不同于雄性小鼠RGMb在睾丸中的定位具有阶段特异性[21]。G. F. Erickson等[25]研究发现,BMP信号通路中的大多数成员均定位于子宫内膜细胞与腔上皮细胞中,如BMP4与BMP2蛋白定位于子宫内膜腔上皮、腺上皮与肌环层[3]BMP2 mRNA在小鼠子宫表达[3]BMPR1A与BMPR2B表达于子宫内膜与子宫肌膜上。RGMb与BMP信号途径功能元件的共定位提示,RGMb可能协同BMP信号通路在生殖系统方面发挥着重要的生物学作用。因此,RGMb可能参与BMP对湖羊子宫结构的维持与功能的调控。

为了研究RGMb与子宫机能之间的关系,通过对湖羊进行50%的限饲处理,结果发现,RGMb蛋白的表达水平下降,这可能是由于RGMb mRNA在湖羊子宫的表达量较高,转录后翻译的蛋白质表达量相对较低,从而导致限饲对RGMb蛋白表达量影响较大[26-27]。进一步研究发现,限饲升高了RGMb配体即BMP2与BMP4 mRNA水平,降低了BMP经典通路的受体BMPR1A、BMPR1B与BMPR2 mRNA水平,这种配体与受体相反的变化趋势,可能是由于子宫对限饲后的稳态维持反应,从而维持胎儿的生长发育与存活。大量前期研究指出,BMP信号通路通过影响细胞的增殖与凋亡进而调节动物妊娠过程[28-29]。BMP2/4可参与调控早期妊娠子宫蜕膜退化的过程[30];P.S.Tanwar等[31]指出,BMP4是维持调节子宫内膜稳态的潜在调控者。BMP受体亦是影响雌性动物生殖系统的重要因素之一。在BMPR1B基因敲除小鼠中子宫腺体的形成受阻[6];BMPR1A是胚胎植入期的关键因子[32]。RGMb与BMP信号在调控机体稳态中发挥着重要的生物学功能。转染RGMb cDNA可增强BMP的信号通路转导,但这种增强的效果具有BMP配体依赖性。RGMb可与BMP信号通路受体互作,发挥一定功能作用。研究指出,在转染RGMb的HEK293细胞中,通过免疫共沉淀技术发现,RGMb可与Ⅰ类受体(ALK2、ALK3和ALK6) 和Ⅱ类受体(ACTRIIA、BMPRII和ACTRIIB)相结合形成复合物[20]。另外,人与啮齿动物嗜酸性细胞产生的BMP2与BMP4能促进子宫环形肌与平滑肌细胞的凋亡[33-35]。本试验中,BMP配体与受体mRNA表达量出现的差异性变化,提示限饲影响了BMP信号通路系统在妊娠期湖羊子宫正常发挥功能,然而BMP信号通路与RGMb在湖羊子宫中的具体作用机制有待进一步研究。

4 结论

RGMb在湖羊机体各组织中的表达为研究RGMb参与湖羊机体生长发育调控奠定了基础。限饲影响了子宫组织BMP系统成员尤其是RGMb蛋白的表达,提示RGMb可能参与湖羊子宫机能的调控,为进一步研究BMP在子宫中的作用机制提供了试验依据。

参考文献
[1] ZHANG H, BRADLEY A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development[J]. Development, 1996, 122(10): 2977–2986.
[2] TSUJI K, BANDYOPADHYAY A, HARFE B D, et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing[J]. Nat Genet, 2006, 38(12): 1424–1429. DOI: 10.1038/ng1916
[3] LI Y, WEI Q W, FENG J G, et al. Expression of bone morphogenetic protein 2, 4, and related components of the BMP signaling pathway in the mouse uterus during the estrous cycle[J]. J Zhejiang Univ Sci B, 2014, 15(7): 601–610. DOI: 10.1631/jzus.B1300288
[4] VISSER J A, OLASO R, VERHOEF-POST M, et al. The serine/threonine transmembrane receptor ALK2 mediates Müllerian inhibiting substance signaling[J]. Mol Endocrinol, 2001, 15(6): 936–945.
[5] GOUÉDARD L, CHEN Y G, THEVENET L, et al. Engagement of bone morphogenetic protein type IB receptor and Smad1 signaling by anti-Müllerian hormone and its type Ⅱ receptor[J]. J Biol Chem, 2000, 275(36): 27973–27978.
[6] YI S E, LAPOLT P S, YOON B S, et al. The type Ⅰ BMP receptor BMPRIB is essential for female reproductive function[J]. Proc Natl Acad Sci U S A, 2001, 98(14): 7994–7999. DOI: 10.1073/pnas.141002798
[7] 柳江枫, 杨宝学. RGMb/DRAGON介导的信号通路及其研究进展[J]. 神经药理学报, 2014, 4(2): 46–54.
LIU J F, YANG B X. RGMb/DRAGON mediated signaling pathways[J]. Acta Neuropharmacologica, 2014, 4(2): 46–54. (in Chinese)
[8] YURA S, ITOH H, SAGAWA N, et al. Role of premature leptin surge in obesity resulting from intrauterine undernutrition[J]. Cell Metab, 2005, 1(6): 371–378. DOI: 10.1016/j.cmet.2005.05.005
[9] 孟晨玲. RGMb基因在大鼠发情周期子宫和卵巢及湖羊组织中的表达研究[D]. 南京: 南京农业大学, 2014.
MENG C L. Expression patterns of RGMb in rat uterus and ovary during the estrous cycle and its expression in Hu sheep[D]. Nanjing: Nanjing Agricultural University, 2014. (in Chinese) (in Chinese)
[10] MENG C L, LIU W, HUANG H, et al. Repulsive guidance molecule b (RGMb) is dispensable for normal gonadal function in mice[J]. Biol Reprod, 2016, 94(4): 78.
[11] 石国庆, 茆达干, 程瑞禾, 等. 湖羊和新疆细毛羊妊娠早期内分泌比较[J]. 南京农业大学学报, 2008, 31(1): 146–148.
SHI G Q, MAO D G, CHENG R H, et al. Comparison of endocrinology during early pregnancy of Hu sheep and Xinjiang fine wool sheep[J]. Journal of Nanjing Agricultural University, 2008, 31(1): 146–148. (in Chinese)
[12] 管峰, 艾君涛, 刘守仁, 等. BMPR-IB和BMP15基因作为湖羊多胎性候选基因的研究[J]. 家畜生态学报, 2005, 26(3): 9–12.
GUAN F, AI J T, LIU S R, et al. Study of BMPR-IB and BMP15 as candidate genes for prolificacy in Hu sheep[J]. Acta Ecologiae Animalis Domastici, 2005, 26(3): 9–12. (in Chinese)
[13] 茆达干, 石国庆, 张红琳, 等. 湖羊早期妊娠的子宫内环境研究[J]. 畜牧兽医学报, 2010, 41(9): 1203–1207.
MAO D G, SHI G Q, ZHANG H L, et al. Study on intrauterine environment during early pregnancy of Hu sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2010, 41(9): 1203–1207. (in Chinese)
[14] ZHANG H, SUN L W, WANG Z Y, et al. Dietary N-carbamylglutamate and rumen-protected-arginine supplementation ameliorate fetal growth restriction in undernourished ewes[J]. J Anim Sci, 2016, 94(5): 2072–2085. DOI: 10.2527/jas.2015-9587
[15] LANGLEY-EVANS S C, DANIEL Z C, WELLS C A, et al. Protein restriction in the pregnant mouse modifies fetal growth and pulmonary development: role of fetal exposure to β-hydroxybutyrate[J]. Exp Physiol, 2011, 96(2): 203–215. DOI: 10.1113/expphysiol.2010.054460
[16] WU G Y, BAZER F W, SATTERFIELDET M C, et al. Impacts of arginine nutrition on embryonic and fetal development in mammals[J]. Amino Acids, 2013, 45(2): 241–256. DOI: 10.1007/s00726-013-1515-z
[17] MENG C L, GUO N N, WEI Q W, et al. Expression of repulsive guidance molecule b (RGMb) in the uterus and ovary during the estrous cycle in rats[J]. Acta Histochem, 2014, 116(8): 1231–1236. DOI: 10.1016/j.acthis.2014.07.006
[18] GUO N N, MENG C L, BAI W J, et al. Prostaglandin F induces expression of activating transcription factor 3 (ATF3) and activates MAPK signaling in the rat corpus luteum[J]. Acta Histochem, 2015, 117(2): 211–218. DOI: 10.1016/j.acthis.2014.12.008
[19] WEI Q W, SHI F X. Cleavage of poly (ADP-ribose) polymerase-1 is involved in the process of porcine ovarian follicular atresia[J]. Anim Reprod Sci, 2013, 138(3-4): 282–291. DOI: 10.1016/j.anireprosci.2013.02.025
[20] SAMAD T A, REBBAPRAGADA A, BELL E, et al. DRAGON, a bone morphogenetic protein co-receptor[J]. J Biol Chem, 2005, 280(14): 14122–14129. DOI: 10.1074/jbc.M410034200
[21] XIA Y, SIDIS Y, MUKHERJEE A, et al. Localization and action of Dragon (repulsive guidance molecule b), a novel bone morphogenetic protein coreceptor, throughout the reproductive axis[J]. Endocrinology, 2005, 146(8): 3614–3621. DOI: 10.1210/en.2004-1676
[22] 孟晨玲, 王亚磊, 郭南南, 等. 湖羊RGMb基因的克隆、序列分析及表达[J]. 畜牧与兽医, 2014, 46(6): 59–62.
MENG C L, WANG Y L, GUO N N, et al. Cloning, sequence analysis and expression of RGMb gene from Hu sheep[J]. Animal Husbandry & Veterinary Medicine, 2014, 46(6): 59–62. (in Chinese)
[23] MA C H, BRENNER G J, OMURA T, et al. The BMP coreceptor RGMb promotes while the endogenous BMP antagonist noggin reduces neurite outgrowth and peripheral nerve regeneration by modulating BMP signaling[J]. J Neurosci, 2011, 31(50): 18391–18400. DOI: 10.1523/JNEUROSCI.4550-11.2011
[24] XIAO Y P, YU S H, ZHU B G, et al. RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance[J]. J Exp Med, 2014, 211(5): 943–959. DOI: 10.1084/jem.20130790
[25] ERICKSON G F, FUQUA L, SHIMASAKI S. Analysis of spatial and temporal expression patterns of bone morphogenetic protein family members in the rat uterus over the estrous cycle[J]. Endocrinology, 2004, 182(2): 203–217. DOI: 10.1677/joe.0.1820203
[26] 胡兰. 动物生物化学[M]. 北京: 中国农业大学出版社, 2007.
HU L. Animal biochemistry[M]. Beijing: China Agricultural University Press, 2007. (in Chinese)
[27] GU L B, ZHU N X, ZHANG H Y, et al. Regulation of XIAP translation and induction by MDM2 following irradiation[J]. Cancer Cell, 2009, 15(5): 363–375. DOI: 10.1016/j.ccr.2009.03.002
[28] LIU G, LIN H, ZHANG X, et al. Expression of Smad2 and Smad4 in mouse uterus during the oestrous cycle and early pregnancy[J]. Placenta, 2004, 25(6): 530–537. DOI: 10.1016/j.placenta.2003.11.006
[29] PARIA B C, DAS S K, ANDREWS G K, et al. Expression of the epidermal growth factor receptor gene is regulated in mouse blastocysts during delayed implantation[J]. Proc Natl Acad Sci U S A, 1993, 90(1): 55–59. DOI: 10.1073/pnas.90.1.55
[30] SHIMASAKI S, MOORE R K, OTSUKA F, et al. The bone morphogenetic protein system in mammalian reproduction[J]. Endocr Rev, 2004, 25(1): 72–101. DOI: 10.1210/er.2003-0007
[31] TANWAR P S, MCFARLANE J R. Dynamic expression of bone morphogenetic protein 4 in reproductive organs of female mice[J]. Reproduction, 2011, 142(4): 573–579. DOI: 10.1530/REP-10-0299
[32] MONSIVAIS D, CLEMENTI C, PENG J, et al. Uterine ALK3 is essential during the window of implantation[J]. Proc Natl Acad Sci U S A, 2016, 113(3): E387–E395. DOI: 10.1073/pnas.1523758113
[33] LEE M J, YANG C W, JIN D C, et al. Bone morphogenetic protein-7 inhibits constitutive and interleukin-1β-induced monocyte chemoattractant protein-1 expression in human mesangial cells: role for JNK/AP-1 pathway[J]. J Immunol, 2003, 170(5): 2557–2563. DOI: 10.4049/jimmunol.170.5.2557
[34] MIYAZAKI Y, OSHIMA K, FOGO A, et al. Evidence that bone morphogenetic protein 4 has multiple biological functions during kidney and urinary tract development[J]. Kidney Int, 2003, 63(3): 835–844. DOI: 10.1046/j.1523-1755.2003.00834.x
[35] WILLETTE R N, GU J L, LYSKO P G, et al. BMP-2 gene expression and effects on human vascular smooth muscle cells[J]. J Vasc Res, 1999, 36(2): 120–125. DOI: 10.1159/000025634