畜牧兽医学报  2017, Vol. 48 Issue (12): 2414-2420. DOI: 10.11843/j.issn.0366-6964.2017.12.022    PDF    
热应激致Hsc70出入核与细胞凋亡的关系
陈洪博1, 段滇宁1, 鲍恩东2     
1. 龙岩学院生命科学学院, 龙岩 364012;
2. 南京农业大学动物医学院, 南京 210095
摘要:旨在探讨热应激对H9c2心肌细胞构成型HSP70(constitutive or cognate HSPs,Hsc70)出入核及细胞凋亡的影响。以42℃作为热应激模型温度,通过转染Hsc70 siRNA抑制Hsc70表达,Western blot检测细胞质和细胞核内Hsc70表达,ELISA检测细胞培养液LDH浓度,Annexin V-FITC/PI双染法检测细胞凋亡。结果表明,正常H9c2心肌细胞质Hsc70表达量较高,细胞核中表达量很低,细胞质和细胞核Hsp72表达量非常低。热应激后细胞质Hsc70表达量无显著差异,而细胞核Hsc70热应激30和100 min后极显著升高(P < 0.01),热应激240 min后开始降低;细胞质和细胞核Hsp72热应激后显著升高(P < 0.05或P < 0.01)。Hsc70抑制表达后,细胞质Hsc70水平显著降低,热应激后Hsc70入核明显减少,但仍然有入核现象;Hsc70抑制表达对细胞质和细胞核Hsp72表达无显著影响。与热应激组相比,热应激+Hsc70 siRNA组LDH表达量呈升高趋势,热应激100 min两组出现显著差异(P < 0.05);Hsc70抑制表达后H9c2细胞在热应激后更容易发生凋亡,而且在热应激30和100 min内,两组之间存在显著差异(P < 0.05)。结果提示,热应激可诱使Hsc70出入细胞核,Hsc70抑制表达后热应激诱导Hsc70入核显著降低,细胞损伤加重,细胞凋亡升高。
关键词热应激    Hsc70    出入核    细胞凋亡    
The Relationship between Hsc70 Import-export Nuclear and Apoptosis by Heat Stress
CHEN Hong-bo1, DUAN Dian-ning1, BAO En-dong2     
1. College of Life Science, Longyan University, Longyan 364012, China;
2. College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
Abstract: The experiment was conducted to study effects of heat stress on Hsc70 import-export nuclear and apoptosis in H9c2 cardiac myocytes. H9c2 cells were exposed to 42℃ as the heat stress model, inhibited expression of Hsc70 was performed by transfecting Hsc70 siRNA, the expression of Hsc70 in the cytoplasm and nucleus were detected by Western blot, LDH concentration of cell culture was detected by ELISA, and apoptosis was detected by Annexin V-FITC/PI double staining. The results showed that:in normal H9c2 cardiomyocytes, the level of Hsc70 in cytoplasm was high and that in nucleus was low, the level of Hsp72 in cytoplasm and nucleus was very low. There was no significant difference in the expression of Hsc70 after heat stress. The expression of Hsc70 in nucleus was significantly increased after heat stress 30 and 100 min (P < 0.01), and decreased after heat stress 240 min. After heat stress, the expression of Hsp72 was significantly increased (P < 0.01 or P < 0.05). After Hsc70 inhibited, the level of cytosolic Hsc70 was significantly decreased, and Hsc70 import nucleus decreased significantly after heat stress. After Hsc70 inhibited, there was no significant effect on the expression of Hsp72 in cytoplasm and nucleus. Compared with the heat stress group, the expression of LDH was increased in the heat stress+Hsc70 siRNA group, and there was a significant difference between the two groups after heat stress 100 min (P < 0.05). After Hsc70 inhibited, H9c2 cells were more prone to apoptosis after heat stress, and there was a significant difference between the two groups in heat stress 30 and 100 min (P < 0.05). In conclusion, heat stress can cause Hsc70 import and export nuclear, and the low level of Hsc70 nucleus can cause of H9c2 cells damage aggravated and the rate of apoptosis increased after heat stress.
Key words: heat stress     Hsc70     import-export nuclear     apoptosis    

热休克蛋白(heat shock proteins,HSPs)是具有高度保守性、在机体内起非特异性保护作用的一类蛋白质,在维持细胞内环境稳态中起重要作用,根据分子量大小分为四个家族:HSP90、HSP70、HSP60和小HSPs[1-2]。其中HSP70是热休克蛋白家族中最重要的成员,在细胞内源性保护机制中起重要作用[3-5],根据其表达特征可分为诱导型HSP70(inducible HSPs,Hsp72)和构成型HSP70(constitutive or cognate HSPs,Hsc70)。在正常生理状态下,细胞内Hsc70大量存在,在细胞的正常代谢和生理调控过程中发挥作用;而Hsp72在正常细胞内含量非常低,当机体受到多种应激原刺激时表达量显著升高,Hsp72通过绑定到受损蛋白质和错误折叠的多肽,从而起到修复或者降解变性蛋白的目的,使细胞产生耐受性[6-7]

热应激不仅影响畜禽的生长、发育、免疫能力及生产性能,而且能引起畜禽的猝死,造成应激过程中动物猝死的主要原因在于动物重要生命器官(例如心)的组织细胞遭受严重的应激性病理损伤。HSP70可以保护自身的组织细胞免受不良应激原刺激所产生的各种应激性伤害,在应激耐受和应激保护中发挥重要作用,虽然应激状态下有关HSP70的研究报道很多[8-10],但作为动物体内最保守的蛋白质之一,Hsc70的确切功能、热应激后细胞核内Hsc70含量动态变化及规律、Hsc70在热应激致细胞凋亡中的作用还不十分清楚。本试验拟通过siRNA抑制H9c2细胞中Hsc70的表达,观察热应激后细胞质和细胞核中Hsc70的表达规律、细胞凋亡的变化,阐明Hsc70出入核在细胞凋亡中的作用。

1 材料与方法 1.1 实验材料

H9c2细胞系购自中国科学院上海细胞库;细胞核蛋白裂解提取试剂盒(78501;Thermo Scientific);BCA蛋白定量试剂盒(23235;Thermo Scientific);Super signal west pico化学发光底物试剂盒美国Thermo Scientific(TS)公司;Hsc70抗体(ADI-SPA-820-F;Enzo Life Sciences)、Hsp72抗体(ADI-SPA-810-F;Enzo Life Sciences),β-actin(13E5, Cell Signaling Technology);Histone H3抗体购自碧云天生物技术公司;荧光标记的阴性对照siRNA、Hsc70 siRNA引物序列(5′-CCTGAACAAGAGCATCAAT-3′)和Lipofectamine 2000脂质体转染试剂(Invitrogen);LDH试剂盒和Annexin V-FITC/PI细胞凋亡检测试剂盒购自碧云天生物技术公司。

1.2 试验设计

将H9c2细胞按1×105·mL-1的细胞密度接种在六孔板中,使细胞均匀分布于孔板中,培养12 h后严格按照Lipofectamine 2000操作步骤转染Hsc70 siRNA。转染36 h后,热应激处理细胞:将细胞置于42 ℃的水浴中孵育分别应激0、30、100和240 min,收集细胞用于流式细胞仪检测和Western blot检测。

1.3 细胞核蛋白和细胞质蛋白的提取

严格按照试剂盒说明书操作:用预冷PBS将贴壁细胞洗一遍,用细胞刮刮下细胞,4 ℃ 3 000 r·min-1离心5 min收集细胞,弃掉上清液,留下细胞沉淀备用;每20 μL细胞沉淀加入200 μL含蛋白酶抑制剂的细胞蛋白抽提试剂A;高速剧烈振荡15 s,把细胞沉淀完全悬浮并分散开;冰浴10~15 min;加入细胞蛋白抽提试剂B 10 μL,高速剧烈振荡15 s,冰浴10 min,高速剧烈振荡15 s,4 ℃ 12 000 r·min-1离心5 min,吸取上清至预冷的离心管中,即为抽提得到的细胞质蛋白,-20 ℃保存备用;将沉淀部分的上清液吸尽,加入50 μL含蛋白酶抑制剂的细胞核蛋白抽提试剂;振荡15 s,使细胞沉淀团块完全分散开且悬浮于蛋白提取试剂中,之后放在冰块上冰浴,静置2 min,再重复振荡15 s,持续操作30 min;4 ℃ 12 000 r·min-1离心10 min,立即吸取上清液至预冷的离心管中,即为抽提得到的细胞核蛋白,BCA法测定样品蛋白质浓度,-80 ℃保存备用。

1.4 Western blot检测HSP70表达

将待测样品与5×SDS-loading buffer按照4:1比例混合,置于漩祸振荡仪振荡30 s充分混匀, 煮沸变性10 min,冷却5 min,置于-20 ℃冰箱保存备用,取10 μg加入到浓缩胶的上样孔中,以预染的蛋白质Marker作为对照,100 V条件下,电泳90 min,冰浴条件下,100 V电转90 min,将脱脂奶粉溶于TBST中配制成5%的封闭液,将转印好的PVDF膜置于其中,室温封闭2 h,一抗4 ℃孵育过夜,二抗室温孵育2 h,显影后进行灰度扫描,Quantity One软件进行分析。

1.5 流式细胞仪检测细胞凋亡

用预冷的FACS Buffer将应激处理后的细胞洗2次,每孔加入500 μL不含EDTA的胰酶消化液消化并离心收集细胞。再用预冷FACS Buffer洗三次,最后将心肌细胞重悬于200 μL Binding Buffer中,加入10 μL Annexin V-FITC,轻轻混匀,室温避光反应15 min;加入PI染色,避光15 min,然后在1 h内进行检测。将300 μL Binding Buffer加入待测样品中,移入流式细胞专用试管中,混匀检测。数据分析采用FlowJo7.6软件。

1.6 LDH活性的检测

按照试剂盒操作步骤检测细胞上清液中LDH的含量。

1.7 数据统计与分析

用SPSS 20.0统计软件提供的多重比较的单因素分析对热应激组与试验组的差异进行统计分析。每个试验重复3次,结果以平均值±标准差(x±s)表示,P<0.05表示差异显著,P<0.01表示差异极显著。

2 结果 2.1 热应激对H9c2细胞质内Hsc70和Hsp72表达的影响

热应激后H9c2心肌细胞质内HSP70的表达变化如图 1所示,H9c2心肌细胞质内Hsc70的含量呈下降趋势,但各组无显著差异(P>0.05);正常H9c2心肌细胞质中Hsp72表达量非常低,但热应激处理后Hsp72表达量迅速升高,热应激100 min后Hsp72表达量显著升高(P<0.05),热应激240 min后Hsp72表达量极显著升高(P<0.01)。

*和**表示与对照组相比时试验组在0.05和0.01水平差异显著 *P < 0.05, **P < 0.01, when comparing the heat stressed groups with the control 图 1 热应激H9c2细胞质内HSP70相对表达量 Figure 1 The relative levels of HSP70 expression in heat-stressed myocardial cell's cytoplasm
2.2 热应激对H9c2细胞核内Hsc70和Hsp72表达的影响

热应激对H9c2心肌细胞核HSP70蛋白表达变化如图 2所示,H9c2细胞核Hsc70和Hsp72的含量都很低,热应激30和100 min后细胞核中Hsc70表达量极显著升高(P<0.01),热应激240 min后Hsc70表达量呈下降趋势,但仍显著高于对照组(P<0.05);热应激后Hsp72表达呈升高趋势,热应激240 min后表达量显著升高(P<0.05)。

*和**表示与对照组相比时试验组在0.05和0.01水平差异显著 *P < 0.05, **P < 0.01, when comparing the heat stressed groups with the control 图 2 热应激H9c2细胞核内HSP70相对表达量 Figure 2 The relative levels of HSP70 expression in heat-stressed myocardial cell's nucleus
2.3 转染Hsc70 siRNA后热应激对H9c2细胞质内Hsc70和Hsp72表达的影响

Hsc70基因干涉对H9c2细胞质Hsc70和Hsp72表达的影响如图 3所示,转染Hsc70 siRNA后细胞质中Hsc70含量明显减少,热应激100、240 min后Hsc70表达量显著升高(P<0.05);转染Hsc70 siRNA对Hsp72表达量无明显影响,Hsp72表达量非常低,但热应激处理后Hsp72表达量迅速升高,热应激100、240 min后Hsp72表达量极显著升高(P<0.01)。

*和**表示与对照组相比时试验组在0.05和0.01水平差异显著 *P < 0.05, **P < 0.01, when comparing the heat stressed groups with the control 图 3 转染Hsc70 siRNA后热应激H9c2细胞质内HSP70相对表达量 Figure 3 The relative levels of HSP70 expression in heat-stressed Hsc70 gene silence myocardial cell's cytoplasm
2.4 转染Hsc70 siRNA后热应激对H9c2细胞核内Hsc70和Hsp72表达的影响

Hsc70基因干涉对H9c2细胞核Hsc70和Hsp72表达的影响如图 4所示,Hsc70抑制表达后,细胞核中Hsc70表达量明显减少,热应激后呈升高趋势,热应激100 min后表达量显著升高(P<0.05),热应激240 min后表达量开始降低;细胞核中Hsp72含量非常低,热应激后Hsp72表达量呈升高趋势,热应激240 min后表达量极显著升高(P<0.01)。

*和**表示与对照组相比时试验组在0.05和0.01水平差异显著 *P < 0.05, **P < 0.01, when comparing the heat stressed groups with the control 图 4 转染Hsc70 siRNA后热应激H9c2细胞核内HSP70相对表达量 Figure 4 The relative levels of HSP70 expression in heat-stressed Hsc70 gene silence myocardial cell's nucleus
2.5 热应激对H9c2心肌细胞中LDH的影响

热应激H9c2心肌细胞培养液中LDH活力的影响如图 5所示,在HS组和HS+siRNA组热应激后LDH的表达量都呈升高趋势,热应激240 min后LDH含量极显著升高(P<0.01)。热应激100 min后HS组LDH含量显著升高(P<0.05),HS+siRNA组LDH含量极显著升高(P<0.01),两组之间存在显著差异(P<0.05)。

a(*)和b分别表示在0.05和0.01水平上差异显著和极显著 *, a P < 0.05 and b P < 0.01 compared with controls 图 5 热应激后H9c2细胞培养液中LDH的水平(x±s, n=10) Figure 5 The levels of LDH in medium after heat stress(x±s, n=10)
2.6 热应激对H9c2心肌细胞凋亡的影响

热应激对H9c2心肌细胞凋亡影响如图 67所示,热应激后H9c2细胞凋亡率呈升高趋势,在HS组热应激100 min后细胞凋亡率显著升高(P<0.05),热应激240 min后细胞凋亡率极显著升高(P<0.01);在HS+siRNA组热应激30 min后细胞凋亡率显著升高(P<0.05),热应激100 min后细胞凋亡率极显著升高(P<0.01)。在热应激30和100 min,与HS组相比,HS+siRNA组细胞凋亡率显著升高(P<0.05)。

A.对照组;B. Hsc70 siRNA组;C.热应激240 min组;D.热应激240 min + Hsc70 siRNA组 A. Control group; B. Hsc70 siRNA group; C. HS 240 min group; D. HS 240 min + Hsc70 siRNA group 图 6 热应激对H9c2心肌细胞凋亡的影响 Figure 6 Effects of heat stress on H9c2 cells apoptosis
a(*)和b分别表示在0.05和0.01水平上与对照组差异显著和极显著 Compared with controls, *, a.P < 0.05; b.P < 0.01 图 7 热应激后H9c2细胞凋亡的影响(x±s, n=10) Figure 7 Effects of heat stress on H9c2 apoptosis(x±s, n=10)
3 讨论

Hsc70是一种重要的细胞质分子伴侣保护蛋白,广泛参与各种保护机体和细胞的功能,增强机体的应激耐受性、提高细胞存活率[11-12]。Hsc70也存在于其他细胞器内,如细胞核和近细胞膜位置[13]。研究发现,在正常细胞质内Hsc70表达量很高,热应激后Hsc70的表达量降低,但并无显著差异;细胞核内Hsc70热应激后表达量显著升高,热应激100 min后极显著升高(P<0.01),热应激240 min后表达量开始降低,表明热应激后Hsc70可能入核,与细胞核内某些蛋白质相结合,防止某些蛋白质错误折叠,从而抑制细胞凋亡的发生。Hsp72在正常细胞质中表达量非常低,应激后大量表达,细胞核中Hsp72的表达量与细胞质中表达规律相一致。M. Iftinca等研究发现Hsc70含量在应激前后的细胞内无明显变化[14],M. Zhang等研究发现细胞内Hsp72在应激后显著升高,而在正常细胞内水平较低[15],这与我们的研究相一致。大量研究表明热应激后细胞核内HSP70迅速增加,细胞质内只有少量存在,当细胞处于恢复阶段时,核内的HSP70消失,细胞质内仍有低水平HSP70表达[16-17],而本研究发现热应激后细胞核内Hsc70呈现先增多后减少的现象,应激后Hsp72在细胞核和细胞质中都大量表达。细胞质中Hsc70和Hsp72的含量变化与其他学者研究相一致,但细胞核Hsc70的含量变化之前并无报道。

RNA干扰技术(RNA interference,RNAi)能使得细胞系中特定蛋白质的表达下调[18],该技术被大规模的应用在细胞系上,用于某种特定蛋白质的研究[19]。本试验采用Hsc70 siRNA转染H9c2心肌细胞,转染48 h后细胞质内Hsc70表达量极显著降低(P<0.01),达到试验所需条件。与热应激组相比,HS+Hsc70 siRNA组的H9c2细胞质内Hsc70表达量呈升高趋势,但Hsc70的含量始终处于相对较低的水平;细胞核内Hsc70的含量显著降低,变化规律与热应激组相一致,试验结果表明热应激后Hsc70进入细胞核,Hsc70抑制使得进入细胞核的Hsc70减少。与热应激组相比,热应激+ Hsc70 siRNA组的H9c2细胞质和细胞核内Hsp72的表达变化规律并无显著改变,但细胞质中Hsp72的表达出现时间提前,试验结果表明Hsc70抑制表达后H9c2细胞更容易受到高温的刺激,为减少高温对细胞的影响Hsp72的表达量迅速升高。

热应激可使细胞遭受损伤,随着热应激时间延长细胞损伤越来越严重,细胞上清液中LDH的表达量极显著升高(P<0.01),这与许多报道研究一致。与热应激组相比,热应激+ Hsc70 siRNA组LDH变化规律是相一致,但LDH的表达量呈升高趋势,热应激100 min两组出现显著差异(P<0.05),表明Hsc70抑制表达后细胞更容易受到损伤。热应激后H9c2细胞凋亡率升高,与热应激组相比,热应激+ Hsc70 siRNA组H9c2细胞凋亡率变化规律相一致,Hsc70抑制表达后H9c2细胞在热应激后更容易发生凋亡,而在热应激30和100 min内,两组之间存在显著差异(P<0.05),表明Hsc70抑制表达后细胞更容易发生凋亡。H. Li等研究表明细胞内HSP70过表达后使JNK活性受到抑制,从而抑制细胞凋亡[20];HSP70还能抑制应激激酶P38 (HOG1)的活性,防止细胞凋亡[21]。D. D. Mosser等研究发现过表达HSP70能抑制caspase-3的活性,从而抑制细胞凋亡的发生[22]

4 结论

研究发现热应激既能引起Hsc70入核,又能使Hsc70出核,细胞凋亡和损伤与细胞内Hsc70的表达量呈负相关,即当细胞核内Hsc70表达量降低后,热应激造成的细胞凋亡和损伤的程度明显加重,表明Hsc70可以保护自身细胞免受不良刺激,但Hsc70是具体通过哪一条信号通路来抑制细胞凋亡和损伤还有待进一步研究。

参考文献
[1] 李玉保, 付旭彬, 鲍恩东. 热休克蛋白研究进展[J]. 畜牧与兽医, 2004, 36(11): 38–40.
LI Y B, FU X B, BAO E D. Review of heat shock proteins research[J]. Animal Husbandry & Veterinary Medicine, 2004, 36(11): 38–40. DOI: 10.3969/j.issn.0529-5130.2004.11.020 (in Chinese)
[2] YU J M, BAO E D, YAN J Y, et al. Expression and localization of Hsps in the heart and blood vessel of heat-stressed broilers[J]. Cell Stress Chaperones, 2008, 13(3): 327–335. DOI: 10.1007/s12192-008-0031-7
[3] GARRIDO C, GURBUXANI S, RAVAGNAN L, et al. Heat shock proteins:endogenous modulators of apoptotic cell death[J]. Biochem Biophys Res Commun, 2001, 286(3): 433–442. DOI: 10.1006/bbrc.2001.5427
[4] OZBEN T. Oxidative stress and apoptosis:impact on cancer therapy[J]. J Pharm Sci, 2007, 96(9): 2181–2196. DOI: 10.1002/jps.20874
[5] 鲍恩东, 龚远英, HARTUNGJ, 等. 肉鸡热应激病理损伤与应激蛋白(HSP70)相关性研究[J]. 中国农业科学, 2004, 37(2): 301–305.
BAO E D, GONG Y Y, HARTUNG J, et al. Relation between pathologic damages and HSP70 changes in acute heat stressed broilers[J]. Scientia Agricultura Sinica, 2004, 37(2): 301–305. (in Chinese)
[6] PARSELL D A, LINDQUIST S. The function of heat-shock proteins in stress tolerance:degradation and reactivation of damaged proteins[J]. Annu Rev Genet, 1993, 27(1): 437–496. DOI: 10.1146/annurev.ge.27.120193.002253
[7] ANDREEVA N V, ZATSEPINA O G, GARBUZ D G, et al. Recombinant HSP70 and mild heat shock stimulate growth of aged mesenchymal stem cells[J]. Cell Stress Chaperones, 2016, 21(4): 727–733. DOI: 10.1007/s12192-016-0691-7
[8] BARINGOU S, ROUAULT J D, KOKEN M, et al. Diversity of cytosolic HSP70 Heat Shock Protein from decapods and their phylogenetic placement within Arthropoda[J]. Gene, 2016, 591(1): 97–107. DOI: 10.1016/j.gene.2016.06.061
[9] SINGH A K, LAKHOTIA S C. Erratum to:Expression of hsrω-RNAi transgene prior to heat shock specifically compromises accumulation of heat shock-induced Hsp70 in Drosophila melanogaster[J]. Cell Stress Chaperones, 2016, 21(1): 105–120. DOI: 10.1007/s12192-015-0644-6
[10] BOBKOVA N, GUZHOVA I, MARGULIS B, et al. Dynamics of endogenous Hsp70 synthesis in the brain of olfactory bulbectomized mice[J]. Cell Stress Chaperones, 2013, 18(1): 109–118. DOI: 10.1007/s12192-012-0359-x
[11] MEACHAM G C, PATTERSON C, ZHANG W Y, et al. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation[J]. Nat Cell Biol, 2001, 3(1): 100–105. DOI: 10.1038/35050509
[12] SALA G, MARINIG D, RIVA C, et al. Rotenone down-regulates HSPA8/hsc70 chaperone protein in vitro:a new possible toxic mechanism contributing to Parkinson's disease[J]. Neurotoxicology, 2016, 54: 161–169. DOI: 10.1016/j.neuro.2016.04.018
[13] CHENG W N, LI D, WANG Y, et al. Cloning of heat shock protein genes (hsp70, hsc70 and hsp90) and their expression in response to larval diapause and thermal stress in the wheat blossom midge, Sitodiplosis mosellana[J]. J Insect Physiol, 2016, 95: 66–77. DOI: 10.1016/j.jinsphys.2016.09.005
[14] IFTINCA M, FLYNN R, BASSO L, et al. The stress protein heat shock cognate 70(Hsc70) inhibits the Transient Receptor Potential Vanilloid type 1(TRPV1) channel[J]. Mol Pain, 2016, 12: 1744806916663945.
[15] ZHANG M, YUE Z H, LIU Z J, et al. Hsp70 and HSF-1 expression is altered in the tissues of pigs transported for various periods of times[J]. J Vet Sci, 2012, 13(3): 253–259. DOI: 10.4142/jvs.2012.13.3.253
[16] ASEA A, KRAEFT S K, KURT-JONES E A, et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine[J]. Nat Med, 2000, 6(4): 435–442. DOI: 10.1038/74697
[17] GLOVER J R, LINDQUIST S. Hsp104, Hsp70, and Hsp40:a novel chaperone system that rescues previously aggregated proteins[J]. Cell, 1998, 94(1): 73–82. DOI: 10.1016/S0092-8674(00)81223-4
[18] CLEMENS J C, WORBY C A, SIMONSON-LEFF N, et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways[J]. Proc Natl Acad Sci U S A, 2000, 97(12): 6499–6503. DOI: 10.1073/pnas.110149597
[19] ELBASHIR S M, HARBORTH J, LENDECKEL W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Nature, 2001, 411(6836): 494–498. DOI: 10.1038/35078107
[20] LI H, LIU L, XING D, et al. Inhibition of the JNK/Bim pathway by Hsp70 prevents Bax activation in UV-induced apoptosis[J]. FEBS Lett, 2010, 584(22): 4672–4678. DOI: 10.1016/j.febslet.2010.10.050
[21] GONG X W, LUO T T, DENG P, et al. Stress-induced interaction between p38 MAPK and HSP70[J]. Biochem Biophys Res Commun, 2012, 425(2): 357–362. DOI: 10.1016/j.bbrc.2012.07.096
[22] MOSSER D D, CARON A W, BOURGET L, et al. The chaperone function of hsp70 is required for protection against stress-induced apoptosis[J]. Mol Cell Biol, 2000, 20(19): 7146–7159. DOI: 10.1128/MCB.20.19.7146-7159.2000