畜牧兽医学报  2017, Vol. 48 Issue (12): 2407-2413. DOI: 10.11843/j.issn.0366-6964.2017.12.021    PDF    
不同年龄牦牛肾的组织学特征
王婷, 崔燕, 何俊峰, 刘鹏刚, 张倩, 杨雪     
甘肃农业大学 动物医学院, 兰州 730070
摘要:旨在探究牦牛肾的组织学特征及增龄性变化。选取新生(1~7日龄)、成年(3~6岁)及老年(7~10岁)牦牛肾为研究对象,各5头份,采用组织学方法对不同年龄牦牛肾的组织结构进行观察,通过图像分析软件分析并测量肾单位的相关数据。组织学观察显示牦牛肾包含表面的被膜和内部的实质。肾小体由肾小球和肾小囊构成,肾小囊壁层富含胶原纤维,肾小体基膜呈PAS阳性;肾小管包括近端小管和远端小管,其小管外围富含胶原纤维,上皮基膜呈PAS阳性。测量结果表明,单位视野(2.3×106 μm2)内肾小球数随年龄增长而减少;肾小球内细胞数和肾小球细胞核大小随年龄增长而增加;不同的是,肾小球和肾小体的最大切面面积,成年达峰值,老年次之,新生最低。另外,随年龄增长,单位视野(2.3×104 μm2)内肾皮质与髓质肾小管上皮细胞数,近端小管上皮细胞核的大小,远端小管上皮细胞核的大小分别与单位视野内肾小球个数、肾小球内细胞数和肾小球细胞核的大小、肾小球和肾小体的最大切面面积变化趋势一致。结果表明,牦牛肾的组织结构随年龄的增长出现差异性变化,推测这种变化可能与肾小球硬化、实质性细胞减少有关,具体机制还有待进一步研究。
关键词牦牛    肾小球    肾小管上皮细胞    增龄性变化    
Histological Study on Age-Associated Changes in the Kidney of the Yak
WANG Ting, CUI Yan, HE Jun-feng, LIU Peng-gang, ZHANG Qian, YANG Xue     
College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
Abstract: This experiment was conducted to investigate the histological characteristics and age-related changes in yak kidney. Newborn (1-7 days old, n=5), adult (3-6 years old, n=5) and old (7-10 years old, n=5) yaks were selected as the subjects, and histological and statistical methods were used to observe the changes in yak kidney. The relevant data of kidney units was analyzed and measured by the image analysis software. Histological observations showed that yak kidneys consisted of the surface of the membrane and the internal substance. The malpighian corpuscles were composed of glomeruli and renal capsules. The wall of the renal capsule was rich in collagen fibers and the basal membrane of malpighian corpuscles was PAS positive. The kidney tubules included proximal tubules and distal tubules, which are rich in collagen fibers and had a positive PAS on the epithelium basal membrane. The results of measuring showed that the number of glomeruli per unit field (2.3×106 μm2) decreased with age; while the number of glomerular cells and the size of glomerular nuclei increased with age; the differences was in the maximum cross-sectional area of glomeruli and malpighian corpuscle were the largest in adult, followed by the differences in the aged, with those in the newborn being the smallest. In addition, with the age increasing, the trend of changes in the number of tubule epithelial cells in the kidney cortex and medulla per unit field (2.3×104 μm2), the size of proximal tubule and distal tubule epithelial nuclei were the same as the number of glomeruli and cells in glomeruli, the size of glomeruli nuclei, and the maximum cross-sectional area changes of glomeruli and malpighian corpuscle. The results suggested that the histological structures of yak kidney changed with the increase of age. Moreover, it is presumed that the contributing factors to this change might include glomeruli sclerosis and reduction of substantial cells, however, further empirical investigation is required to be conclusive.
Key words: yak     glomeruli     kidney tubular epithelial cells     age-associated changes    

肾是动物机体最重要的排泄器官,其正常结构对于维持机体内环境稳态具有重要的作用[1]。到目前为止,有关肾组织结构的研究主要集中于人(Homo)[2]、小鼠(Mus musculus)[3]、双峰驼(Camelus ferus)[4]、牦牛(Bos grunniens)[5-6]、大熊猫(Ailuropoda melanoleuca)[7]、非洲犀牛(Diceros bicornis)[8]和兔(Leporidae)[9]等,而肾的增龄性变化研究仅限于小鼠[10]和人[11]。尚未见到系统的有关牦牛肾增龄性变化的研究资料。因此,本研究运用组织学和图像分析的方法对牦牛肾组织的各部分结构进行观察并测量分析,来阐述不同年龄段牦牛肾结构组织学变化特征,为进一步研究牦牛肾发育和生理学功能提供可靠的数据资料及形态学依据。

1 材料与方法 1.1 试验动物

本试验以牦牛为研究对象,分别采集新生(1~7日龄)、成年(3~6岁)及老年(7~10岁)健康牦牛肾,每个年龄段各5头份,所有牦牛经颈动脉放血处死后,迅速采集肾组织并固定于4%多聚甲醛溶液中。其中新生牦牛购自甘肃省甘南藏族自治州,其余组别牦牛购自青海省。

1.2 组织样品的制备

取上述经多聚甲醛固定的肾组织,沿肾长轴剖成对称的两半,在两半组织上各随机取3个大小为0.5 cm×0.6 cm×0.7 cm组织块,常规石蜡包埋,连续切片(6 μm),进行HE染色,Masson’ s三色(苯胺蓝)染色和AB-PAS染色,中性树胶封固。利用Olympus DP71显微照相系统进行观察并拍照。

1.3 数据测量及统计分析

肾小球(G)个数:在100×下,选取10个单位视野(2.3×106 μm2)[10-11]对肾小球(G)进行计数。

皮质(C)和髓质(M)肾小管上皮细胞数:在1 000×下,选取10个单位视野(2.3×104 μm2),采用V.K.Goyal等的方法[10-11],对皮质(C)和髓质(M)肾小管上皮细胞进行计数。

肾小球(G)和肾小体(MC)的最大切面面积:在40×下选取50个肾小体,对每一个肾小体从出现至消失进行观察,直至临近最大面积时,选取三张在1 000×下测量肾小体和肾小球最大切面面积的平均值[12];肾小球内细胞数和细胞核的大小参照K.M.Newbold等的方法[13],即在1 000×下测量。

近曲小管(PCT)、近直小管(PST)、远曲小管(DCT)、远直小管(DST)上皮细胞核大小与上述肾小球内细胞数和细胞核的直径的测量方法相同。

所有数据均采用Image-Pro Plus 6.0图像分析软件进行统计,结果以平均值±标准误(x±sx)表示。运用SPSS19.0统计学软件进行单因素方差分析,其中P<0.01代表差异极显著,P<0.05代表差异显著,P>0.05代表差异不显著。

2 结果 2.1 牦牛肾的组织结构观察

牦牛肾表面被覆一层由胶原纤维(图 1A)组成的被膜,被膜下为实质。实质主要包括肾小体和肾小管,其中肾小体呈椭球形,从内到外分别是肾小球及肾小囊;肾小球主要由一团毛细血管网盘绕而成,肾小囊壁层富含胶原纤维(图 1B)。另外通过AB-PAS染色发现肾小体基膜上呈现PAS阳性,并且观察到肾小体基膜是不连续的(图 1C)。

A.新生牦牛肾被膜,Masson’ s三色(苯胺蓝)染色,1 000×;B.成年牦牛肾小体,Masson’ s三色(苯胺蓝)染色,1 000×;C.成年牦牛肾小体基膜,AB-PAS染色,1 000×;D.成年牦牛皮质肾小管,Masson’ s三色(苯胺蓝)染色,1 000×;E.成年牦牛髓质肾小管,Masson’ s三色(苯胺蓝)染色,1 000×;F.成年牦牛肾小管基膜,AB-PAS染色,1 000×;Ca.被膜;MC.肾小体;G.肾小球;RC.肾小囊;PCT.近曲小管;DCT.远曲小管;PST.近直小管;DST.远直小管;CF.胶原纤维;Gly.糖原 A. Capsule of newborn yak' s kidney, Masson' s trichrome (aniline blue) stain, 1 000×; B. Malpighian corpuscle of adult yak' s kidney, Masson' s trichrome (aniline blue) stain, 1 000×; C. Basal membrane in the Malpighian corpuscle of adult yak' s kidney, AB-PAS stain, 1 000×; D. The kidney cortex of adult yak, Masson' s trichrome (aniline blue) stain, 1 000×; E. The kidney medulla of adult yak, Masson' s trichrome (aniline blue) stain, 1 000×; F. Basal membrane in the tubule of adult yak' s kidney, AB-PAS stain, 1 000×; Ca. Capsule; MC. Malpighian corpuscle; G. Glomeruli; RC. Renal capsule; PCT. Proximal convoluted tubule; DCT. Distal convoluted tubule; PST. Proximal straight tubule; DST. Distal straight tubule; CF. Collagen fiber; Gly. Glycogen 图 1 牦牛肾组织结构 Figure 1 Histological features of the yak kidney

肾小管主要包括皮质的近曲小管和远曲小管(图 1D)以及髓质的近直小管和远直小管(图 1E),肾小管外围富含胶原纤维(图 1D~E)。另外,肾小管上皮基膜呈现PAS阳性(图 1F)。

2.2 牦牛肾小体增龄性变化

对牦牛肾小体增龄性变化的研究发现,随年龄增长,牦牛肾皮质中肾小球数量减少(图 2A~C)。肾小体随年龄增长而增大,其中新生牦牛肾小球内细胞分布密集,尤其在边缘区域,细胞排列紧密规则;而到成年和老年肾小球内细胞之间间隙增大,细胞排列疏松,并且边缘区域细胞数量减少(图 2D~F)。

A~C.新生、成年及老年牦牛肾皮质,HE染色,100×;D~F.新生、成年及老年牦牛肾小体,HE染色,1 000×;G.肾小球;RC.肾小囊;MC.肾小体;MD.致密斑 A-C. The kidney cortex from newborn, adult and old yaks respectively, HE stain, 100×; D-F. Malpighian corpuscle from newborn, adult and old yaks respectively, HE stain, 1 000×; G. Glomeruli; RC. Renal capsule; MC. Malpighian corpuscle; MD. Macular densa 图 2 不同年龄牦牛肾小体组织结构特点 Figure 2 General histological features of yak malpighian corpuscle at different age groups

经测量,单位视野(2.3×106 μm2)内新生牦牛肾小球数为(41.61±1.76)个,肾小球内细胞数为(78.82±1.55)个,肾小球细胞核直径为(4.56±0.04)μm;成年牦牛肾小球数为(13.45±0.67)个,肾小球内细胞数为(124.72±4.03)个,肾小球细胞核直径为(4.88±0.05)μm;老年牦牛肾小球数为(11.36±0.32)个,肾小球内细胞数为(126.07±1.63)个,肾小球细胞核直径为(5.17±0.07)μm。新生牦牛的肾小球数量极显著高于成年和老年(P<0.01),而肾小球内细胞数量极显著低于成年和老年(P<0.01),肾小球细胞核的直径极显著低于成年和老年(P<0.01)(表 1)。此外,由表 1还可以看出,肾小球及肾小体的最大切面面积随年龄的增长,呈先增大后减小的趋势,其中新生牦牛最小,成年牦牛最大,而老年牦牛肾小球及肾小体最大切面面积介于新生牦牛和成年牦牛之间。另外,差异性分析结果显示,新生牦牛肾小球最大切面面积极显著低于成年及老年牦牛(P<0.01);而肾小体最大切面面积各年龄组差异极显著(P<0.01)。

表 1 不同年龄牦牛肾的肾小体相关测量数据 Table 1 The related measurement data of MC in the kidney at different age yak
2.3 牦牛肾小管增龄性变化

牦牛各年龄组肾小管结构的研究如图 3A~F所示,结果发现相比成年(图 3BE)和老年(图 3CF)牦牛的肾小管,新生牦牛肾小管结构还未发育完全,近端小管(图 3A)管壁不明显,而远端小管(图 3D)较为明显。同时,通过测量单位视野(2.3×104 μm2)中新生牦牛、成年牦牛及老年牦牛肾皮质和髓质中肾小管上皮细胞数(表 2)发现,新生牦牛肾脏皮质和髓质中肾小管上皮细胞数最多,其次是成年,老年最少;另外,牦牛肾皮质和髓质中肾小管上皮细胞数差异性分析显示,各年龄组之间差异极显著。

A~C.新生、成年及老年牦牛肾皮质,HE染色,1 000×;D~F.新生、成年及老年牦牛肾髓质,HE染色,1 000×;PCT.近曲小管;DCT.远曲小管;PST.近直小管;DST.远直小管 A-C. The kidney cortex of newborn, adult and old yaks, HE stain, 1 000×; D-F. The kidney medulla of newborn, adult and old yaks, HE stain, 1 000×; PCT. Proximal convoluted tubule; DCT. Distal convoluted tubule; PST. Proximal straight tubule; DST. Distal straight tubule 图 3 不同年龄牦牛肾的肾小管上皮组织结构特点 Figure 3 General histological features of yak tubule epithelial cells in the kidney at different age groups
表 2 不同年龄牦牛肾的肾小管相关测量数据 Table 2 The related measurement data of tubules in the kidney at different age yak

另外,对牦牛肾近端小管和远端小管上皮细胞核的直径进行了测量,结果显示,近端小管上皮细胞核的直径随年龄增长而增大,其中近曲小管和近直小管上皮细胞核的直径在各年龄组中差异均极显著(P<0.01);远端小管上皮细胞核的直径,随年龄增长先增大后减小,其中成年远曲小管上皮细胞核的直径极显著高于新生及成年牦牛(P<0.01);新生牦牛远直小管上皮细胞核的直径极显著低于成年及老年牦牛(P<0.01)(表 2)。

3 讨论

赵善廷等[5]和莫重存等[6]分别对牦牛肾的解剖形态结构、肾小体和肾小管的直径进行了描述,但并未对不同年龄牦牛肾进行测量比较。本研究首次对不同年龄牦牛肾内肾小球的数量、肾小球和肾小体最大切面面积、肾小球内细胞数和细胞核直径进行了研究。结果发现,随年龄增长,单位视野内牦牛肾的肾小球数量减少,这与G. Pannarale等[14]和A. Denic等[15]对人肾的研究结果一致,该结果表明随着年龄的增长,肾小球逐渐发生硬化,从而导致肾小球数量减少。同时,V. K. Goyal[11]对鼠肾小球和肾小体的研究发现,随年龄的增长,肾小球及肾小体的直径增大;另外,J. R. Nyengaard等[16]和E. M. Darmady等[17]研究发现人的肾小球体积随年龄增长而下降;H. Tauchi等[18]对日本人肾小球大小的研究发现,肾小球直径随着年龄增长而减小;而本研究结果发现,牦牛肾小球和肾小体最大切面面积随年龄先增大后减小,该结果与上述学者研究结果不一致,推测可能与物种差异等因素有关[17]。此外,本试验还测量了牦牛肾小球内细胞数和细胞核的直径,发现随年龄增长,肾小球内细胞数逐渐增多,细胞核逐渐增大,这与V. K. Goyal等在鼠[10]和人[11]上的研究结果完全一致,表明可能是由于随年龄的增长,实质性细胞减少,从而导致肾小球内其余细胞出现代偿性肥大[17]

H. Tauchi等[18]对人肾小管上皮细胞数进行测量发现,老年人肾小管上皮细胞的数量相比其他年龄有所减少;V. K. Goyal等[10]对小鼠肾的研究结果表明,随年龄增长肾小管上皮细胞的数量逐渐减少。本研究分别测量了肾皮质与髓质中的肾小管上皮细胞数,发现这两个区域的肾小管上皮细胞数都随年龄增长而减少,这一结果与H. Tauchi等[18]对人肾小管上皮细胞数及V. K. Goyal等[10]对小鼠肾的研究结果一致,说明肾小管上皮细胞数的变化与年龄相关的实质性细胞数量减少有关,而与其在肾中的分布位置无关。另外,本研究还测量了牦牛肾近端小管及远端小管上皮细胞核的直径,结果发现近端小管上皮细胞核的直径随年龄变化逐步增大,而远端小管上皮细胞核直径随年龄变化先增大后减小,这与V. K. Goyal[11]在人肾皮质近端小管上皮细胞核直径的研究结果类似。目前,对远端小管上皮细胞核的变化鲜有报道,仅蔡广研等[19]对人肾小管研究发现随年龄增长,远端小管开始退化,其细胞核出现收缩现象。通过大量查阅文献,我们推测出现这种现象可能是由于近端小管与远端小管在肾中所发挥的功能不同[20-22]

Masson’ s三色(苯胺蓝)染色、PAS染色常用于确定肾的病理变化[23-24]。X. L. Wang等[25]和R. Schmitt等[26]通过对人和C57BL/6J小鼠肾进行Masson’ s三色及PAS染色,来评估肾的纤维化程度和病变程度。本研究通过对牦牛肾进行Masson’ s三色(苯胺蓝)染色发现,蓝色的胶原纤维主要分布在肾被膜、肾小囊壁层及肾小管外围,而其在肾间质内的含量较少。另外,通过AB-PAS染色发现,牦牛肾小体及肾小管基膜上呈PAS阳性,肾小体基膜不连续,这可能与其滤过功能相关。本研究通过对牦牛正常肾组织结构的Masson’ s三色(苯胺蓝)染色和AB-PAS染色,可以为病理状况下肾组织的结构变化提供参考。

4 结论

首次对不同年龄组牦牛肾组织结构进行了观察和测量。牦牛肾组织结构与其他哺乳动物相似。单位视野(2.3×106 μm2)内肾小球数随年龄增长而减少,肾小球和肾小体最大切面面积随年龄增长先增大后减小。单位视野(2.3×104 μm2)内皮质与髓质肾小管上皮细胞数随年龄增长而减少。说明肾的组织结构变化与年龄相关,这种变化的原因可能与肾中,肾小球发生硬化,实质性细胞减少有关,其具体机制还有待进一步研究。

参考文献
[1] GULLO A, CHIEREGO M L. Homeostasis-basics, definitions, clinical evidence[M]//GULLO A. Anaesthesia, Pain, Intensive Care and Emergency Medicine-A.P.I.C.E. Milano:Springer, 2002:539-575.
[2] MCBRIDE J M. Embryology, anatomy, and histology of the kidney[M]//HANSEL D, KANE C, PANER G, et al. The Kidney. New York, NY:Springer, 2016:1-18.
[3] LIEBELT A G. Unique features of anatomy, histology, and ultrastructure kidney, mouse[M]//JONES T C, HARD G C, MOHR U. Urinary System. Berlin Heidelberg:Springer, 1998:37-57.
[4] 王雯慧, 陈怀涛. 双峰驼肾脏的比较组织学研究[J]. 兰州大学学报:自然科学版, 2000, 36(4): 73–79.
WANG W H, CHEN H T. Studies on comparative histology of the kidneys in Bactrian Camels (Camelus bactrianus)[J]. Journal of Lanzhou University:Natural Sciences, 2000, 36(4): 73–79. (in Chinese)
[5] 赵善廷, 王士平, 秦传芳, 等. 牦牛肾脏的定量组织学和组织化学研究[J]. 中国牦牛, 1990(3): 49–51.
ZHAO S T, WANG S P, QIN C F, et al. Quantitative histological and histochemical studies of yak kidney[J]. China Yak, 1990(3): 49–51. (in Chinese)
[6] 莫重存, 俞红贤. 青海牦牛肾脏的形态学观测[J]. 甘肃畜牧兽医, 2004, 34(5): 12–13.
MO C C, YU H X. Observation of renal morphology in Qinghai yak[J]. Gansu Animal and Veterinary Sciences, 2004, 34(5): 12–13. (in Chinese)
[7] 米志平, 杨智, 李平. 小熊猫肾脏和输尿管的组织学研究[J]. 四川动物, 2003, 22(4): 241–243.
MI Z P, YANG Z, LI P. Histological research on kidney and ureter of red pandas[J]. Sichuan Journal of Zoology, 2003, 22(4): 241–243. (in Chinese)
[8] 逯志强, 彭克美, 张建宾, 等. 非洲白犀牛肾脏的组织学研究[C]//中国畜牧兽医学会动物解剖学及组织胚胎学分会第十六次学术研讨会论文集. 北京: 中国畜牧兽医学会, 2010: 285-288.
LU Z Q, PENG K M, ZHANG J B, et al. Histological study on the African white rhinoceros kidney.[C]//Proceedings of the 16th Academic Symposium on Animal Anatomy and Tissue Embryology Branch of Chinese Association of Animal Science and Veterinary Medicine. Beijing:Chinese Association of Animal Science and Veterinary Medicine, 2010:285-288. (in Chinese)
[9] KOZMA C, MACKLIN W, CUMMINS L M, et al. Anatomy, physiology, and biochemistry of the rabbit[M]//WEISBROTH S H, FLATT R E, KRAUS A L. The Biology of the Laboratory Rabbit. Amsterdam:Elsevier:1974:49-72.
[10] GOYAL V K, CHATTERJEE P C. Changes with age in mouse kidney[J]. Exp Gerontol, 1980, 15(3): 151–160. DOI: 10.1016/0531-5565(80)90059-5
[11] GOYAL V K. Changes with age in the human kidney[J]. Exp Gerontol, 1982, 17(5): 321–331. DOI: 10.1016/0531-5565(82)90032-8
[12] GUO M, RICARDO S D, DEANE J A, et al. A stereological study of the renal glomerular vasculature in the db/db mouse model of diabetic nephropathy[J]. J Anat, 2005, 207(6): 813–821. DOI: 10.1111/JOA.2005.207.issue-6
[13] NEWBOLD K M, HOWIE A J, GIRLING A J, et al. A simple method for assessment of glomerular size and its use in the study of kidneys in acromegaly and compensatory renalenlargement[J]. J Pathol, 1989, 158(2): 139–146. DOI: 10.1002/(ISSN)1096-9896
[14] PANNARALE G, CARBONE R, DEL MASTRO G, et al. The aging kidney:structural changes[J]. J Nephrol, 2010, 23(Suppl 15): S37–S40.
[15] DENIC A, GLASSOCK R J, RULE A D. Structural and functional changes with the aging kidney[J]. Adv Chronic Kidney Dis, 2016, 23(1): 19–28. DOI: 10.1053/j.ackd.2015.08.004
[16] NYENGAARD J R, BENDTSEN T F. Glomerular number and size in relation to age, kidney weight, and body surface in normal man[J]. Anatom Rec, 1992, 232(2): 194–201. DOI: 10.1002/(ISSN)1097-0185
[17] DARMADY E M, OFFER J, WOODHOUSE M A. The parameters of the ageingkidney[J]. J Pathol, 1973, 109(3): 195–207. DOI: 10.1002/(ISSN)1096-9896
[18] TAUCHI H, TSUBOI K, OKUTOMI J. Age changes in the human kidney of the differentraces[J]. Gerontology, 1971, 17(2): 87–97. DOI: 10.1159/000211811
[19] 蔡广研, 陈香美, 师锁柱, 等. 肾小管上皮细胞标志物随增龄变化及其意义[J]. 中华老年医学杂志, 2005, 24(12): 918–920.
CAI G Y, CHEN X M, SHI S Z, et al. Effects of aging on the cell markers of kidney tubular epithelium[J]. Chinese Journal of Geriatrics, 2005, 24(12): 918–920. DOI: 10.3760/j:issn:0254-9026.2005.12.013 (in Chinese)
[20] DESANTO N G, ANASTASIO P, COPPOLA S, et al. Age-related changes in renal reserve and renal tubular function in healthy humans[J]. Child Nephrol Urol, 1991, 11(1): 33–40.
[21] RASTALDI M P, FERRARIO F, GIARDINO L, et al. Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies[J]. Kidney Int, 2002, 62(1): 137–146. DOI: 10.1046/j.1523-1755.2002.00430.x
[22] HIGGINS J P, KIM S K. Renal aging and transplantation[M]//SIERRA F, KOHANSKI R. Advances in Geroscience. Cham:Springer, 2016:377-396.
[23] BRODSKY S V, ALBAWARDI A, SATOSKAR A A, et al. When one plus one equals more than two-a novel stain for renal biopsies is a combination of two classical stains[J]. Histol Histopathol, 2010, 25(11): 1379–1383.
[24] HENRIKSEN K J. Assessment of kidneys in adult autopsies[J]. Diagn Histopathol, 2017, 23(3): 117–125. DOI: 10.1016/j.mpdhp.2017.03.009
[25] WANG X L, ANGLANI F, BEARA-LASIC L, et al. Glomerular pathology in dent disease and its association with kidney function[J]. Clin J Am Soc Nephrol, 2016, 11(12): 2168–2176. DOI: 10.2215/CJN.03710416
[26] SCHMITT R, JACOBI C, SUSNIK N, et al. Ageing mouse kidney-not always the SAME old story[J]. Nephrol Dial Transplant, 2009, 24(10): 3002–3005. DOI: 10.1093/ndt/gfp232