畜牧兽医学报  2017, Vol. 48 Issue (12): 2277-2285. DOI: 10.11843/j.issn.0366-6964.2017.12.007    PDF    
克隆山羊成纤维细胞IGF2-H19基因座甲基化分析
刘孜斐, 邓明田, 任才芳, 万永杰, 王锋     
南京农业大学动物科技学院, 南京 210095
摘要:旨在研究山羊体细胞核移植对克隆后代成纤维细胞IGF2-H19基因座甲基化的影响。以奶山羊耳成纤维细胞(GFC,对照组)和克隆山羊耳成纤维细胞(CFC,试验组)为试验材料,培养至第5代时,采用细胞计数法绘制细胞生长曲线,流式细胞仪检测细胞凋亡情况,实时荧光定量PCR分析基因的表达差异,亚硫酸氢盐测序(BSP)分析差异甲基化区域的甲基化水平。结果显示,GFC和CFC组细胞的生长曲线均呈典型"S"型,但CFC组细胞的凋亡率显著高于GFC组(P < 0.01);CFC组细胞中Dnmt1(P < 0.01)、Dnmt3bP < 0.01)、Tet1(P < 0.05)、Tet2(P < 0.05)、H19(P < 0.05)和IGF2(P < 0.01)基因表达水平均显著低于GFC组,而Tet3、Dnmt3aIGF2R在2组间无显著性差异;CFC组细胞中IGF2两个差异甲基化区域(DMR1和DMR2)的甲基化水平均显著低于GFC组(74.1%vs.57.8%,P < 0.01;76.8%vs.40.0%,P < 0.01),但IGF2-H19印记基因控制区域甲基化水平显著高于GFC组(68.8%vs.84.0%,P < 0.01)。体细胞核移植通过影响DnmtTet家族基因的表达引起IGF2-H19基因座甲基化的异常,导致基因印记紊乱,进而影响再克隆的效率。
关键词体细胞核移植    再克隆    IGF2-H19    DNA甲基化    山羊耳成纤维细胞    
IGF2-H19 Locus Methylation Status in Cloned Goat Fibroblast Cells
LIU Zi-fei, DENG Ming-tian, REN Cai-fang, WAN Yong-jie, WANG Feng     
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
Abstract: The aim of this experiment was to study the influence of somatic cell nuclear transfer on IGF2-H19 locus methylation in cloned goat fibroblast cells. Goat ear fibroblast cells (GFC, control group) and cloned goat ear fibroblast cells (CFC, experimental group) were used as experimental materials. When cells in the 2 groups were cultured to passage 5, using cell counting method for cell growth curves, flow cytometer for cell apoptosis, real-time PCR for gene relative expression level and bisulfite sequencing PCR for the methylation status of differentially methylated region (DMR). The results showed that cell growth curves in the 2 groups were typical "S"-shaped, but apoptosis rate in CFC group was increased significantly(P < 0.01) compared with that in GFC group. The expression level of Dnmt1 (P < 0.01), Dnmt3b (P < 0.01), Tet1 (P < 0.05), Tet2 (P < 0.05), H19 (P < 0.05) and IGF2 (P < 0.01) in CFC group were decreased significantly compared with that in GFC group. However, no statistical differences were found at the expression levels of Tet3、Dnmt3a and IGF2R between the 2 groups. Compared with GFC group, the methylation level of IGF2 DMR1 (74.1% vs. 57.8%, P < 0.01) and DMR2 (76.8% vs. 40.0%, P < 0.01) were decreased significantly, while the methylation level of IGF2-H19 imprinting control region (ICR) was increased significantly (68.8% vs. 84.0%, P < 0.01) in CFC group. Somatic cell nuclear transfer resulted in aberrant methylation of IGF2-H19 locus by influencing Dnmts and Tets genes expression, which could affect genomic imprinting, and then influence the efficiency of serial recloning.
Key words: somatic cell nuclear transfer     recloning     IGF2-H19     DNA methylation     goat ear fibroblast cells    

再克隆是指使用体细胞核移植(Somatic cell nuclear transfer,SCNT)技术将克隆早期胚胎卵裂球或克隆动物体细胞作为核供体注入去核卵母细胞中,获得与克隆动物遗传性状完全一致的再克隆动物的过程[1]。再克隆在优良种畜的复制、动物遗传多样性保存、濒危动物挽救和转基因动物扩繁等方面都具有重要的意义[1]。但随着克隆代数的增加,再克隆胚胎的成活率越来越低,再克隆的效率也越来越低[2-3],因此近些年越来越多的研究都致力于提高再克隆胚胎的成活率和再克隆的效率。研究表明,供体细胞核DNA的甲基化水平会显著影响SCNT胚胎的成活率[4],影响克隆的效率;SCNT过程亦会造成克隆后代DNA甲基化的异常[5-6]。在哺乳动物中,DNA甲基化的主要形式5-甲基胞嘧啶(5-methylcytosine,5mC)主要发生在CpG岛上,是一种重要的表观遗传修饰,与X染色体失活[7]和基因印记[8-9]密切相关。

IGF2和H19位于同一基因座,IGF2为母源印记父源表达基因,在胚胎时期表达水平较高,机体出生后也会继续表达[10-11],其在调控骨骼肌卫星细胞增殖[12]、禽类胸腺的生长发育和物质代谢[13]过程中有重要作用;H19为父源印记母源表达基因,在胚胎组织中表达水平也很高,出生后各组织的表达水平则明显受到抑制[14],可参与机体药物代谢过程[15],与雄性不育和肠道癌症等疾病密切相关[16-17]IGF2和H19基因的印记受差异甲基化区域(Differentially methylated region,DMR)控制,也称为印记基因印记调控区域(Imprinting control region,ICR),对胚胎的发育有至关重要的作用[18],ICR的异常甲基化会导致胚胎发育异常甚至死胎[14]。此外,IGF2-H19 ICR的异常也会提高肺慢性阻塞、白血病和乳腺癌等疾病发生的概率[19-21]

综上所述,我们推测SCNT可能通过影响IGF2-H19基因座的甲基化,进而影响再克隆效率;同时,虽然克隆胚胎的甲基化研究已很深入,但克隆动物体细胞中IGF2-H19基因座甲基化的研究鲜有报道。因此本试验以奶山羊耳成纤维细胞(Goat fibroblast cells,GFC)和克隆山羊耳成纤维细胞(Cloned goat fibroblast cells,CFC)为对象,研究SCNT过程对山羊成纤维细胞IGF2-H19基因座甲基化的影响,为再克隆的研究提供重要参考。

1 材料与方法 1.1 试验材料 1.1.1 试验动物

GFC(对照组)和CFC(试验组)分别取自2月龄健康雌性萨能奶山羊(陕西杨凌)和2月龄健康雌性克隆山羊的耳组织,分离、鉴定、保存方法参照参考文献[22]。克隆山羊核供体细胞为上述奶山羊耳成纤维细胞。

1.1.2 主要试剂

DMEM、DPBS购自Invitrogen;FBS购自Gibco;Alexa Fluor 488 annexin V/Dead Cell Apoptosis Kit购自Thermo Scientific;TIANamp Genomic DNA Kit、RNAprep Pure Cell/Bacteria Kit、DH5α感受态细胞购自天根生化科技有限公司;pMD19-T Vector、PrimeScriptTM RT reagent Kit购自TaKaRa;引物由南京金斯瑞生物科技有限公司合成;SYBR Green PCR Master Mix购自Roche Applied Science。

1.2 试验方法 1.2.1 细胞培养

冻存的细胞从液氮取出后,立即放入37 ℃水浴锅,快速摇动使其融化。以1×105个·mL-1接种于12孔板,每孔加入1 mL含1%双抗(V/V)、1%谷氨酰胺(V/V)和10%胎牛血清(FBS,V/V)的DMEM培养液并置于37 ℃,5% CO2,饱和湿度培养箱中培养。待细胞达到80%汇合度时,用于后续试验。

1.2.2 细胞生长曲线绘制

取第5代细胞,以2×104个·mL-1接种于24孔板,每隔24 h使用胰蛋白酶消化3个孔,使用血球计数板计算细胞密度,持续7 d,绘制细胞生长曲线。未处理的细胞每3 d换液1次。

1.2.3 流式细胞仪分析细胞凋亡

取第5代细胞,弃去培养液,DPBS清洗2次,胰蛋白酶消化。按Alexa Fluor 488 annexin V/Dead Cell Apoptosis Kit操作说明书进行如下操作:预冷DPBS清洗2次,弃上清;用1×annexin-binding buffer重悬细胞,将细胞密度调整为1×106个·mL-1;每孔添加5 μL Alexa Fluor×488 annexin V和1 μL 100 ng·mL-1 PI工作液,室温孵育15 min;添加400 μL 1×annexin-binding buffer,混匀,置于冰上并在2 h内使用流式细胞仪检测。

1.2.4 实时荧光定量PCR

根据RNAprep Pure Cell/Bacteria Kit操作说明书提取细胞总RNA,测定浓度后使用PrimeScriptTM RT reagent Kit进行反转录,获得cDNA,实时荧光定量PCR仪测定基因表达水平。

实时荧光定量PCR在7300 Real-Time PCR系统中进行。反应体系为20 μL:10 μL SYBR Green PCR Master Mix,10 pmol上下游引物,1 μL cDNA,补加双蒸水至20 μL。反应程序:95 ℃预变性10 min;95 ℃变性10 s,60 ℃退火30 s,72 ℃延伸30 s,40个循环。熔解曲线按程序默认运行。实时荧光定量PCR引物使用Primer Premier 5.0设计,见表 1。以GAPDH作为内参基因,采用2-ΔΔCT方法对基因相对表达水平进行分析。

表 1 实时荧光定量PCR引物信息 Table 1 Primer informations of real-time PCR
1.2.5 差异甲基化区域的扩增与纯化

使用TIANamp Genomic DNA Kit提取上述细胞DNA,根据EZ DNA Methylation-DirectTM Kit操作说明进行CT转化。

使用在线软件MethPrimer(http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi)预测甲基化区域并设计甲基化引物(GC含量≥50%,CpG岛覆盖率≥60%),见表 2,采用Touchdown PCR扩增目的差异甲基化区域。电泳检测目的条带,使用Nucleic Acid Purification试剂盒切胶回收,并测定DNA浓度。

表 2 Touchdown PCR甲基化引物信息(Y=C/T, R=A/G) Table 2 Methylation primer informations of Touchdown PCR

Touchdown PCR反应体系为50 μL:25 μL LA Taq酶,25 pmol上下游引物,3 μL DNA,补加双蒸水至50 μL。反应程序:95 ℃预变性5 min;95 ℃变性30 s,60 ℃退火1 min,72℃延伸1 min,20个循环。每个循环退火温度降低0.5 ℃。95 ℃变性30 s,50 ℃退火1 min,72 ℃延伸1 min,25个循环;72 ℃终末延伸7 min;4 ℃保存。

1.2.6 差异甲基化区域测序

按pMD19-T载体说明书进行操作,将目的基因与载体连接,转入感受态细胞DH5α,铺平板,挑单克隆,摇菌过夜培养。菌液PCR验证后,将含有目的条带的菌液送至南京擎科生物科技有限公司测序,以备后续甲基化分析。

菌液PCR反应体系为20 μL:10 μL LA Taq酶,10 pmol上下游引物,1 μL菌液,补加双蒸水至20 μL。反应程序:98 ℃预变性10 min;98 ℃变性10 s,60 ℃退火30 s,72 ℃延伸1 min,30个循环;72 ℃终末延伸5 min;4 ℃保存。

1.2.7 数据分析

试验重复3次,每次5个重复。采用SPSS 18.0软件对数据进行分析,表示为“平均值±标准误(Mean±SEM)”。细胞增殖、凋亡和基因表达水平通过t检验计算P值。甲基化测序结果使用BIQ Analyzer软件进行分析,获得每个样品的甲基化状态,通过卡方分析[23]计算P值。“*”表示差异显著(P<0.05),“**”表示差异极显著(P<0.01)。

2 结果 2.1 克隆山羊成纤维细胞增殖与凋亡结果分析

图 1A1B所示,2组细胞形态无明显差异,细胞生长曲线均呈典型的“S”型(图 1C)。试验前3 d,细胞生长速率和细胞数量无显著性差异,但是第4~7 d,CFC组细胞数量均显著高于GFC组(第4天:P<0.05;第5天:P<0.01;第6天:P<0.01;第7天:P<0.05)。

A. GFC组细胞形态;B. CFC组细胞形态;C. GFC和CFC组细胞生长曲线;D. GFC和CFC组细胞凋亡结果;E. GFC和CFC组流式细胞仪分析细胞凋亡结果。*. P<0.05,**. P<0.01,下同 A. Cell morphology of GFC group; B. Cell morphology of CFC group; C. Cell growth curves of GFC and CFC groups; D. Apoptosis rates in GFC and CFC groups; E. Apoptosis in GFC and CFC groups detected by flow cytometer. *.P < 0.05, **.P < 0.01, the same as below 图 1 奶山羊和克隆山羊成纤维细胞的增殖与凋亡结果 Figure 1 Results of cell proliferation and apoptosis of GFC and CFC

图 1D所示,CFC组细胞凋亡率显著高于GFC组(P<0.01)。CFC组较高的凋亡率可能与其较高的增殖率有关。

2.2 基因表达水平分析 2.2.1 Dnmt家族和Tet家族基因表达水平分析

与GFC组相比,CFC组Dnmt1(P<0.01)、Dnmt3b(P<0.01)、Tet1(P<0.05)和Tet2(P<0.05)基因表达水平均显著降低,Dnmt3aTet3则无显著性变化(图 2A2B)。

A. GFC和CFC组Dnmt家族基因表达水平;B. GFC和CFC组Tet家族基因表达水平;C. GFC和CFC组印记基因表达水平 A. The expression levels of Dnmts in GFC and CFC groups; B. The expression levels of Tets in GFC and CFC groups; C. The expression levels of imprinted genes in GFC and CFC groups 图 2 实时荧光定量PCR检测奶山羊和克隆山羊成纤维细胞DnmtTet家族以及印记基因表达水平 Figure 2 The expression levels of Dnmts, Tets and imprinted genes in GFC and CFC detected by real-time PCR
2.2.2 印记基因表达水平分析

CFC组H19基因表达水平显著低于GFC组(P<0.05),且IGF2极显著低于GFC组(P<0.01),而IGF2R无显著性变化(图 2C)。

2.3 H19和IGF2差异甲基化区域甲基化结果分析

IGF2 DMR1位于其启动子(图 3A),含有32个CpG位点,GFC组甲基化水平为74.1%,CFC组甲基化水平为57.8%(图 3B)。与GFC组相比,CFC组IGF2 DMR1甲基化水平显著降低(P<0.01,图 3C)。

A. IGF2 DMR1位置模式图;B. GFC和CFC组的IGF2 DMR1点状甲基化模式图,其中黑点代表甲基化的CpG位点,白点代表未甲基化的CpG位点,每一行代表测序的一个重复;C. GFC和CFC组的IGF2 DMR1甲基化差异结果 A. Schematic of IGF2 DMR1; B. IGF2 DMR1 methylation profiles in GFC and CFC groups, unfilled (white) and filled (black) circles represent unmethylated and methylated CpGs, respectively. Horizontal line of circles represents one single clone that was sequenced; C. The methylation levels of IGF2 DMR1 in GFC and CFC groups 图 3 亚硫酸氢盐测序(BSP)分析奶山羊和克隆山羊成纤维细胞IGF2 DMR1甲基化水平 Figure 3 Putative methylation profiles of IGF2 DMR1 in GFC and CFC groups detected by BSP

IGF2 DMR2位于IGF2下游的内含子(图 4A),含有22个CpG位点,GFC组甲基化水平为76.8%,CFC组甲基化水平为40.0%(图 4B)。CFC组IGF2 DMR2甲基化水平显著低于GFC组(P<0.01,图 4C)。

A. IGF2 DMR2位置模式图;B. GFC和CFC组的IGF2 DMR2点状甲基化模式图,其中黑点代表甲基化的CpG位点,白点代表未甲基化的CpG位点,每一行代表测序的一个重复;C. GFC和CFC组的IGF2 DMR2甲基化差异结果 A. Schematic of IGF2 DMR2; B. IGF2 DMR2 methylation profiles in GFC and CFC groups, unfilled (white) and filled (black) circles represent unmethylated and methylated CpGs, respectively. Horizontal line of circles represents one single clone that was sequenced; C. The methylation levels of IGF2 DMR2 in GFC and CFC groups 图 4 亚硫酸氢盐测序(BSP)分析奶山羊和克隆山羊成纤维细胞IGF2 DMR2甲基化水平 Figure 4 Putative methylation profiles of IGF2 DMR2 in GFC and CFC groups detected by BSP

IGF2-H19 ICR位于H19启动子上游(图 5A),共有25个CpG位点,GFC组甲基化水平为68.8%,CFC组甲基化水平为84.0%(图 5B)。与GFC组相比,CFC组IGF2-H19 ICR甲基化水平显著升高(P<0.01,图 5C)。

A. IGF2-H19 ICR位置模式图;B. GFC和CFC组的IGF2-H19 ICR点状甲基化模式图,其中黑点代表甲基化的CpG位点,白点代表未甲基化的CpG位点,每一行代表测序的一个重复;C. GFC和CFC组的IGF2-H19 ICR甲基化差异结果 A. Schematic of IGF2-H19 ICR; B. IGF2-H19 ICR methylation profiles in GFC and CFC groups, unfilled (white) and filled (black) circles represent unmethylated and methylated CpGs, respectively. Horizontal line of circles represents one single clone that was sequenced; C. The methylation levels of IGF2-H19 ICR in GFC and CFC groups 图 5 亚硫酸氢盐测序(BSP)分析奶山羊和克隆山羊成纤维细胞IGF2-H19 ICR甲基化水平 Figure 5 Putative methylation profiles of IGF2-H19 ICR in GFC and CFC groups detected by BSP
3 讨论

与传统的有性生殖相比,SCNT胚胎成活率很低,克隆后代疾病发生的概率很高。耳成纤维细胞作为SCNT的重要供体细胞之一,其DNA的甲基化水平对SCNT的效率至关重要。本研究发现,SCNT后代成纤维细胞与核供体成纤维细胞相比尽管在形态方面无明显差异,但是在细胞增殖、凋亡、DNA甲基化调控基因和印记基因的表达以及IGF2-H19基因座的甲基化方面都发生了显著性变化,说明SCNT可能通过调控山羊成纤维细胞IGF2-H19基因座的甲基化,进而影响再克隆效率。

印记基因IGF2和H19位于同一条染色体上,IGF2位于H19上游。IGF2的表达受到3个区域的调控,分别是IGF2 DMR1、IGF2 DMR2和IGF2-H19 ICR。IGF2 DMR1位于IGF2启动子,高甲基化的DMR1对IGF2的作用类似沉默子,能够显著抑制IGF2表达[24];同时低甲基化的DMR1会造成IGF2印记的丢失[25]IGF2 DMR2位于IGF2下游的内含子,甲基化的DMR2会显著促进IGF2的转录,但其甲基化水平的高低对IGF2转录水平的影响尚不清楚[26]IGF2-H19 ICR位于H19启动子上游,能够通过甲基化水平的改变调控IGF2和H19的表达:在父源染色体中,ICR高甲基化,CTCF转录因子不能与其结合,H19下游增强子则直接作用于IGF2,导致IGF2高表达、H19沉默或低表达[27-28];在母源染色体中,ICR未甲基化或低甲基化,CTCF转录因子能与其结合,阻断H19下游增强子对IGF2的作用,导致IGF2的沉默或低表达,促进H19的表达。此外,A.Murata等[25]发现,H19基因的表达仅受IGF2-H19 ICR的调控,而不受IGF2基因内的DMR调控。在本研究中,克隆山羊成纤维细胞的IGF2 DMR1和DMR2甲基化水平与奶山羊成纤维细胞相比均显著降低,IGF2-H19 ICR甲基化水平却显著高于奶山羊成纤维细胞,而实时荧光定量PCR结果显示克隆山羊成纤维细胞的IGF2基因表达水平与奶山羊成纤维细胞相比显著降低。这可能是由于克隆山羊成纤维细胞中低甲基化的IGF2 DMR1使IGF2的印记丢失,造成IGF2基因表达的紊乱,进而使克隆山羊成纤维细胞中IGF2的表达水平显著低于奶山羊成纤维细胞,这与前人结果一致[25]。同时,本研究结果显示,克隆山羊成纤维细胞中H19基因表达水平显著低于奶山羊成纤维细胞,并且IGF2-H19 ICR甲基化水平显著升高,这与D.Humpherys等[29]和J.M.Su等[30]的研究结果相似。此外,J.D.Zhou等[21]研究发现,IGF2-H19 ICR的低甲基化会造成H19过表达,这与本试验克隆山羊成纤维细胞中IGF2-H19 ICR的高甲基化抑制H19的表达相一致。因此,体细胞核移植可能会引起克隆山羊成纤维细胞中IGF2-H19基因座甲基化的异常,从而造成基因印记紊乱,影响细胞的状态。

实时荧光定量PCR结果显示,克隆山羊成纤维细胞Dnmt1、Dnmt3bTet1和Tet2基因表达水平与奶山羊成纤维细胞相比显著降低,而Dnmt3aTet3则没有显著性差异,说明SCNT可能造成了DnmtTet家族的基因表达紊乱,这与X.W.Nie等[5]在克隆猪胚胎的研究结果一致。Dnmt家族和Tet家族联合调控DNA的甲基化[31-32]:在DNA复制过程中,DNA甲基化由Dnmt3a和Dnmt3b建立,并由Dnmt1维持[9];而Tet蛋白具有使5mC羟化反应生成5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5hmC)的酶活性,即去甲基化。本研究结果显示,克隆山羊成纤维细胞Dnmt1和Dnmt3b基因表达水平以及IGF2 DMR1和DMR2甲基化水平均显著低于奶山羊成纤维细胞,同时L.Jackson-Grusby等[33]发现,在敲除Dnmt1的小鼠胚胎中IGF2甲基化水平降低,说明Dnmt1和Dnmt3b基因表达水平的降低可能造成IGF2 DMR1和DMR2甲基化水平的降低。L.Z.Liu等[34]在胚胎干细胞中的研究发现,Tet蛋白的减少会造成IGF2-H19 ICR甲基化水平的升高,在敲除Tet1和Tet2的精元干细胞重编程过程中,IGF2-H19 ICR去甲基化过程明显受到抑制[35];说明在本研究中Tet1和Tet2基因表达水平的降低可能造成了IGF2-H19 ICR甲基化水平的升高。另外,也有研究发现,DNA甲基化的异常会随着再克隆代数的增加而累积[36],极大影响SCNT胚胎的成活率和再克隆的效率。以上研究表明,SCNT通过影响DnmtTet家族基因的表达水平,导致克隆山羊成纤维细胞IGF2-H19基因座甲基化的异常,进而影响再克隆效率。

4 结论

体细胞核移植通过影响DnmtTet家族基因的表达而引起IGF2-H19基因座甲基化的异常,导致基因印记紊乱,这很可能是影响再克隆效率的关键因素,但其作用机制仍需进一步研究。

参考文献
[1] GE H T, CUI C, LIU J, et al. The growth and reproduction performance of TALEN-mediated β-lactoglobulin-knockout bucks[J]. Transgenic Res, 2016, 25(5): 721–729. DOI: 10.1007/s11248-016-9967-z
[2] KUROME M, HISATOMI H, MATSUMOTO S, et al. Production efficiency and telomere length of the cloned pigs following serial somatic cell nuclear transfer[J]. J Reprod Dev, 2008, 54(4): 254–258. DOI: 10.1262/jrd.20038
[3] YIN X J, LEE H S, YU X F, et al. Production of second-generation cloned cats by somatic cell nuclear transfer[J]. Theriogenology, 2008, 69(8): 1001–1006. DOI: 10.1016/j.theriogenology.2008.01.017
[4] SAINI M, SELOKAR N L, AGRAWAL H, et al. Treatment of donor cells and reconstructed embryos with a combination of trichostatin-A and 5-aza-2'-deoxycytidine improves the developmental competence and quality of buffalo embryos produced by handmade cloning and alters their epigenetic status and gene expression[J]. Cell Reprogram, 2017, 19(3): 208–215. DOI: 10.1089/cell.2016.0061
[5] NIE X W, LIU Q, WANG R G, et al. DNA demethylation pattern of in-vitro fertilized and cloned porcine pronuclear stage embryos[J]. Clin Chim Acta, 2017, 473: 45–50. DOI: 10.1016/j.cca.2017.07.025
[6] ZHANG J, QU P, ZHOU C, et al. microRNA-125b is a key epigenetic regulatory factor that promotes nuclear transfer reprogramming[J]. J Biol Chem, 2017. DOI: 10.1074/jbc.M117.796771
[7] SMITH Z D, MEISSNER A. DNA methylation:roles in mammalian development[J]. Nat Rev Genet, 2013, 14(3): 204–220. DOI: 10.1038/nrg3354
[8] ZHANG X Y, HU M, LYU X, et al. DNA methylation regulated gene expression in organ fibrosis[J]. Biochim Biophys Acta, 2017, 1863(9): 2389–2397. DOI: 10.1016/j.bbadis.2017.05.010
[9] EDWARDS J R, YARYCHKIVSKA O, BOULARD M, et al. DNA methylation and DNA methyltransferases[J]. Epigenetics Chromatin, 2017, 10: 23. DOI: 10.1186/s13072-017-0130-8
[10] KAUT O, SHARMA A, SCHMITT I, et al. DNA methylation of imprinted loci of autosomal chromosomes and IGF2 is not affected in Parkinson's disease patients' peripheral blood mononuclear cells[J]. Neurol Res, 2017, 39(3): 281–284. DOI: 10.1080/01616412.2017.1279424
[11] BARROCA V, LEWANDOWSKI D, JARACZ-ROS A, et al. Paternal insulin-like growth factor 2 (Igf2) regulates stem cell activity during adulthood[J]. EBioMedicine, 2017, 15: 150–162. DOI: 10.1016/j.ebiom.2016.11.035
[12] 孙晓丽, 李树峰, 佟慧丽, 等. 不同肌肉特异性启动子IGF2表达载体构建及对牛骨骼肌卫星细胞增殖的影响[J]. 畜牧兽医学报, 2015, 46(4): 555–560.
SUN X L, LI S F, TONG H L, et al. The construction of different muscle-specific promoter IGF2 expression vector and its impact on bovine skeletal muscle satellite cell proliferation[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46(4): 555–560. (in Chinese)
[13] 刘艳利, 申静, 支丽慧, 等. 叶酸调控鸡脾和胸腺IGF2表达的表观遗传机制探究[J]. 畜牧兽医学报, 2016, 47(2): 296–304.
LIU Y L, SHEN J, ZHI L H, et al. The study on epigenetic mechanism of IGF2 expression in spleen and thymus regulated by folic acid in broilers[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(2): 296–304. (in Chinese)
[14] PAULSEN M, TAKADA S, YOUNGSON N A, et al. Comparative sequence analysis of the imprinted Dlk1-Gtl2 locus in three mammalian species reveals highly conserved genomic elements and refines comparison with the Igf2-H19 region[J]. Genome Res, 2001, 11(12): 2085–2094. DOI: 10.1101/gr.206901
[15] WU K F, LIANG W C, FENG L, et al. H19 mediates methotrexate resistance in colorectal cancer through activating Wnt/β-catenin pathway[J]. Exp Cell Res, 2017, 350(2): 312–317. DOI: 10.1016/j.yexcr.2016.12.003
[16] LI X P, HAO C L, WANG Q, et al. H19 gene methylation status is associated with male infertility[J]. Exp Ther Med, 2016, 12(1): 451–456. DOI: 10.3892/etm.2016.3314
[17] YANG W W, NING N, JIN X M. The lncRNA H19 promotes cell proliferation by competitively binding to miR-200a and derepressing β-catenin expression in colorectal cancer[J]. Biomed Res Int, 2017, 2017: 2767484.
[18] GIABICANI E, BRIOUDE F, LE BOUC Y, et al. Imprinted disorders and growth[J]. Ann Endocrinol (Paris), 2017, 78(2): 112–113. DOI: 10.1016/j.ando.2017.04.010
[19] BARROW T M, BARAULT L, ELLSWORTH R E, et al. Aberrant methylation of imprinted genes is associated with negative hormone receptor status in invasive breast cancer[J]. Int J Cancer, 2015, 137(3): 537–547. DOI: 10.1002/ijc.29419
[20] LEWIS A, LEE J Y, DONALDSON A V, et al. Increased expression of H19/miR-675 is associated with a low fat-free mass index in patients with COPD[J]. J Cachexia Sarcopenia Muscle, 2016, 7(3): 330–344. DOI: 10.1002/jcsm.12078
[21] ZHOU J D, LIN J, ZHANG T J, et al. Hypomethylation-mediated H19 overexpression increases the risk of disease evolution through the association with BCR-ABL transcript in chronic myeloid leukemia[J]. J Cell Physiol, 2017. DOI: 10.1002/jcp.26119
[22] MENG L, WAN Y J, SUN Y Y, et al. Generation of five human lactoferrin transgenic cloned goats using fibroblast cells and their methylation status of putative differential methylation regions of IGF2R and H19 imprinted genes[J]. PLoS One, 2013, 8(10): e7779.
[23] LUCIFERO D, SUZUKI J, BORDIGNON V, et al. Bovine SNRPN methylation imprint in oocytes and day 17 in vitro-produced and somatic cell nuclear transfer embryos[J]. Biol Reprod, 2006, 75(4): 531–538. DOI: 10.1095/biolreprod.106.051722
[24] CONSTÂNCIA M, DEAN W, LOPES S, et al. Deletion of a silencer element in Igf2 results in loss of imprinting independent of H19[J]. Nat Genet, 2000, 26(2): 203–206. DOI: 10.1038/79930
[25] MURATA A, BABA Y, WATANABE M, et al. IGF2 DMR0 methylation, loss of imprinting, and patient prognosis in esophageal squamous cell carcinoma[J]. Ann Surg Oncol, 2014, 21(4): 1166–1174. DOI: 10.1245/s10434-013-3414-7
[26] MURRELL A, HEESON S, BOWDEN L, et al. An intragenic methylated region in the imprinted Igf2 gene augments transcription[J]. EMBO Rep, 2001, 2(12): 1101–1106. DOI: 10.1093/embo-reports/kve248
[27] IDERAABDULLAH F Y, VIGNEAU S, BARTOLOMEI M S. Genomic imprinting mechanisms in mammals[J]. Mutat Res, 2008, 647(1-2): 77–85. DOI: 10.1016/j.mrfmmm.2008.08.008
[28] WOLFFE A P. Transcriptional control:imprinting insulation[J]. Curr Biol, 2000, 10(12): R463–R465. DOI: 10.1016/S0960-9822(00)00534-0
[29] HUMPHERYS D, EGGAN K, AKUTSU H, et al. Epigenetic instability in ES cells and cloned mice[J]. Science, 2001, 293(5527): 95–97. DOI: 10.1126/science.1061402
[30] SU J M, YANG B, WANG Y S, et al. Expression and methylation status of imprinted genes in placentas of deceased and live cloned transgenic calves[J]. Theriogenology, 2011, 75(7): 1346–1359. DOI: 10.1016/j.theriogenology.2010.11.045
[31] WU X, ZHANG Y. TET-mediated active DNA demethylation:mechanism, function and beyond[J]. Nat Rev Genet, 2017, 18(9): 517–534. DOI: 10.1038/nrg.2017.33
[32] PIYASENA C, CARTIER J, PROVENCAL N, et al. Dynamic changes in DNA methylation occur during the first year of life in preterm infants[J]. Front Endocrinol (Lausanne), 2016, 7: 158.
[33] JACKSON-GRUSBY L, BEARD C, POSSEMATO R, et al. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation[J]. Nat Genet, 2001, 27(1): 31–39. DOI: 10.1038/83730
[34] LIU L Z, MAO S Q, RAY C, et al. Differential regulation of genomic imprinting by TET proteins in embryonic stem cells[J]. Stem Cell Res, 2015, 15(2): 435–443. DOI: 10.1016/j.scr.2015.08.010
[35] BERMEJO-ÁLVAREZ P, RAMOS-IBEAS P, PARK K E, et al. Tet-mediated imprinting erasure in H19 locus following reprogramming of spermatogonial stem cells to induced pluripotent stem cells[J]. Sci Rep, 2015, 5: 13691. DOI: 10.1038/srep13691
[36] WAKAYAMA S, KOHDA T, OBOKATA H, et al. Successful serial recloning in the mouse over multiple generations[J]. Cell Stem Cell, 2013, 12(3): 293–297. DOI: 10.1016/j.stem.2013.01.005