石油物探  2021, Vol. 60 Issue (2): 251-260  DOI: 10.3969/j.issn.1000-1441.2021.02.006
0
文章快速检索     高级检索

引用本文 

牟棋, 马学军, 蔡志东, 等. 托甫台地区TP327井区一间房组Q各向异性分析[J]. 石油物探, 2021, 60(2): 251-260. DOI: 10.3969/j.issn.1000-1441.2021.02.006.
MOU Qi, MA Xuejun, CAI Zhidong, et al. Q-anisotropy analysis of the Yijianfang Formation in the TP327 well area of Tuofutai, China[J]. Geophysical Prospecting for Petroleum, 2021, 60(2): 251-260. DOI: 10.3969/j.issn.1000-1441.2021.02.006.

基金项目

国家自然科学基金(U1839208, U1910205)与中国石油化工股份有限公司研发项目(P18070-5)共同资助

第一作者简介

牟棋(1995—), 男, 硕士在读, 主要从事VSP地震技术的研究工作。Email: mqcugb@163.com

通信作者

芦俊(1980—), 男, 教授, 博士生导师, 主要从事多分量地震技术的研究工作。Email: lujun615@163.com

文章历史

收稿日期:2020-03-19
改回日期:2020-06-13
托甫台地区TP327井区一间房组Q各向异性分析
牟棋1, 马学军2, 蔡志东3, 芦俊4    
1. 中国地质大学(北京)能源学院, 北京 100083;
2. 中国石油化工股份有限公司西北油田分公司勘探开发研究院, 新疆乌鲁木齐830011;
3. 中国石油集团东方地球物理勘探有限责任公司, 河北涿州 072750;
4. 中国地质大学(北京)地球物理与信息技术学院, 北京 100083
摘要:碳酸盐岩储层中, 裂缝和溶洞为主要储集空间, 同时裂缝也是油气运移的主要通道, 因此识别裂缝系统对于碳酸盐岩储层的评价尤为重要。以塔里木盆地托甫台地区TP327井区中奥陶统一间房组为研究对象, 通过分析环状VSP数据的Q各向异性, 描述了裂缝的发育情况。针对VSP井中检波器在目的层之上的情况, 提出了一种将叠前初至波和反射波相结合的Q值估算方法。主要技术流程包括: ①采用噪声压制方法消除反射波的虚假高频; ②利用合成记录的标定, 识别VSP单炮记录中的一间房组反射波; ③基于Q各向异性特征, 通过椭圆拟合分析区域裂缝发育的主方位和Q各向异性程度。该方法的应用结果表明, 托甫台地区TP327井区一间房组裂缝发育的主方位为北东(NE)向, 这与该区域较广泛发育的北东-南西(NE-SW)向断裂的方向一致, 从而验证了所提出的Q各向异性分析方法的可靠性和有效性。
关键词环状VSP    初至波    上行波    频谱比法    走廊叠加    品质因子    Q各向异性    裂缝方位    
Q-anisotropy analysis of the Yijianfang Formation in the TP327 well area of Tuofutai, China
MOU Qi1, MA Xuejun2, CAI Zhidong3, LU Jun4    
1. School of Energy Resources, China University of Geosciences, Beijing 100083, China;
2. Petroleum Exploration and Production Research Institute, Sinopec Northwest Oilfield Company, Urumqi 830011, China;
3. BGP Inc., CNPC, Zhuozhou 072750, China;
4. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China
Abstract: In the Tarim Basin, cavern and fractures are the main carbonate reservoir spaces, with the latter also serving as the main channels for oil and gas migration.Therefore, the study of the fracture network is particularly important for the evaluation of these reservoirs.In this study, taking the Ordovician Yijianfang group in the Tofutai TP327 area of the Tarim Basin as a case study, the development of fractures was predicted through a Q-anisotropy analysis using Walkaround vertical seismic profile (VSP) data.For the geophones installed in wells that did not reach the target formation, the Q values of the latter were estimated using pre-stack VSP first arrivals and reflections.The following data processing methods were adopted: first, the false high frequency of the reflected wave was eliminated by noise suppression; then, the reflections of the Yijianfang group in VSP shot records were identified through calibration of the synthetic record; finally, the dominant fracture azimuth and Q-anisotropy of the Yijianfang group were predicted by ellipse-fitting the Q values.The results of the data processing identified NE as the dominant fracture azimuth, which is consistent with the widely developed NE-SW faults in the area, thereby confirming the effectiveness of the proposed Q-anisotropy analysis method.
Keywords: Walkaround VSP    first arrival    up-going wave    frequency-spectrum-ratio method    corridor stack    quality factor    Q anisotropy    fracture azimuth    

碳酸盐岩储层的主要储集空间是裂缝和溶洞, 同时裂缝也是油气运移的主要通道。识别裂缝系统的发育特征可以获得区域构造应力分布特征、油气运移方位及聚集有利区带等信息, 为后期油气藏评估与开发提供基础资料。因此在碳酸盐岩地区进行裂缝识别对油气勘探开发具有重要的现实意义[1-2]。以奥陶系碳酸盐岩油藏为主的超大型油田已经成为塔里木盆地超深层碳酸盐岩重要的油气勘探目标[3]

对于高角度裂缝发育区, 国内外主要利用横波分裂和纵波方位各向异性特征来预测裂缝参数[4-5]。近些年来, 利用多方位VSP资料分析和预测地层裂缝成为研究热点之一。王成礼等[6]利用多方位VSP数据对单一地震属性提取的裂缝参数进行综合评估, 提高了裂缝参数预测的精度。陈占国等[7]利用Walkaround VSP资料椭圆拟合了裂缝主方位和各向异性程度参数。ZHU等[8-9]提出了用Q矩阵来表征TI介质的P波衰减各向异性, 进而在正交介质的基础上退化为VTI和HTI介质模型, 并线性地推导出P波随方位角变化的归一化衰减系数。尹志恒等[10]建立了HTI介质的物理模型, 实验结果表明, Q最大值方向平行于裂缝走向, 据此可预测裂缝发育方位。

地震波在地下介质传播过程中, 受介质粘弹性的影响, 能量会随传播距离的增加而减弱。由于介质对高频的吸收强于低频, 地震波的主频会向低频端移动, 使得深层的反射波频带变窄、主频变低, 同时产生速度频散, 导致子波畸变, 从而降低地震资料信噪比[11-13]。利用品质因子Q可以定量描述这种地层吸收衰减特征, 目前Q值的估算方法主要有时间域和频率域两大类, 包含时间域的子波模拟法、上升时间法、振幅衰减法和解析信号法等[14-15]; 频率域的频谱比法、质心频率偏移法、频谱拟合法等[16-18]。GUREVICH等[19]探讨了Q值对频率依赖性所产生的系统误差。崔庆辉等[20]通过理论模型分析了地震子波类型、噪声、截断及拟合区间的选取对频谱比法精度的影响, 结果表明子波类型对频谱比法精度影响不大, 选取主频左右的对称区间拟合效果最好。王宗俊等[21]通过模型测试发现, 在衰减窗口下提取的谱比信息在中高频段满足准确的衰减关系。宫同举等[22]对几种Q值提取方法进行了模型测试的对比分析, 得出频率域方法比时间域方法稳定, 频谱比法与理论值吻合最好的结论。在低噪声背景下, 频谱比法已经成为最常用的Q值估算方法之一。

基于VSP数据的Q值估算方法常常是对初至子波进行提取与利用, 但要求目的层在观测井段之内。而对于塔河油田托甫台研究工区, VSP资料存在检波器少、目的层段质控较差或者观测井段在目的层之上的问题。针对上述问题, 基于工区内的Walkaround VSP实际数据, 本文提出了将叠前VSP初至波和反射波相结合的等效Q值估算方法, 研发了配套处理流程; 基于Q各向异性特征, 用椭圆拟合方法预测了一间房组裂缝发育的主方位和各向异性程度。最后, 通过构造背景和前人研究资料的对比, 验证了该方法技术的可行性。

1 资料情况

托甫台TP327井区位于新疆维吾尔自治区库车县和沙雅县境内。工区构造位置处于塔里木盆地阿克库勒凸起西南方向, 北东侧与塔河油田相邻, 北西方向与哈拉哈塘凹陷相接, 南邻顺托果勒低隆(图 1)。本区经历了多期构造运动的影响, 特别是加里东中期运动使中、下奥陶统碳酸盐岩普遍遭受了风化剥蚀, 岩溶发育, 形成一定规模的岩溶储集体, 并且在一间房组上部发育生物礁(滩)裂缝—孔隙型储层。现有构造演化分析结果表明, 塔里木盆地是一个多期次的旋回复合盆地。在加里东早期, 盆地构造应力以拉张作用为主, 中后期构造背景由拉张转为挤压; 在海西运动时期, 受到NW-SE方向的区域压扭应力影响, 发育较多的逆断层[23-24]

图 1 托甫台区域构造位置(据刘志远等[1]修改)

托甫台Walkaround VSP观测系统最大井源距为3000m, 观测井段深3500~3760m, 观测点距为10m, 采用26级井下检波器接收, 共260m。目的层(裂缝地层)位于奥陶系的一间房组(O2yj), 在VSP井TP327井约6760m深度处, 地震反射界面记为T74[25], 在图 2中可见TP327井区目的层同相轴(T74)较为连续, 整体构造平缓。

图 2 过TP327井的VSP剖面

鉴于研究区炮集数据较多, 为得到质量较好的子波, 在全工区5959炮数据中, 以TP327井为中心, 选取炮集偏移距小于200m的数据, 并将其按30°间隔, 划分为12个角度域数据(图 3a)。再在其中选出信噪比高、差异小的数据, 最终选取2个偏移距分别为100m和150m的360°环状炮集进行研究(图 3b)。

图 3 Walkaround VSP偏移距小于200m的炮点方位分布(a)和选取的两个环状炮集数据(b)
2 等效Q值估算

常规的VSP初至波Q值估算方法一般基于大地吸收介质模型, 在地震波的不同传播时刻, 地震平面简谐波振幅谱满足[20-22]:

$ \ln \frac{s\left(f, t_{2}\right)}{s\left(f, t_{1}\right)}=C-\frac{{\rm{\pi}}\left(t_{2}-t_{1}\right)}{Q} f $ (1)

式中: C是与频率f无关的常量, 与激发和接收条件相关; t1t2为不同深度的初至时间; s(f, t1)和s(f, t2)为t1t2时刻的振幅谱。通过最小二乘拟合振幅谱比对数随频率变化的斜率K, 可得出品质因子Q为:

$ Q=-\frac{{\rm{\pi}}\left(t_{2}-t_{1}\right)}{K} $ (2)

由于托甫台地区Walkaround VSP观测系统中检波器较少, 且接收位置在T74反射层之上, 常规的直达波Q值估算方法不再适用, 结合工区实际数据, 提出了一种将VSP叠前初至波和反射波相结合的等效Q值估算方法, 称为VSP反射波频谱比法。即在纵波叠前炮集数据上, 用下行初至波来表示初始的子波信息, 用T74反射波的信息来表示衰减的子波信息, 它蕴含了一间房组裂缝双程波两次衰减信息。

VSP观测系统如图 4所示, 以某一深度的单点检波器为例, S1(f, T1)表示接收的直达波振幅谱, S2(f, T2+T3)表示接收的T74反射波振幅谱。由于偏移距小于200m与目的层深度(近6760m)之间相差太远, 为了便于图形显示, 在图 4中放大了偏移距和观测井段的比例。在偏移距较小的情况下, T74反射波的入射波部分在观测井段上方经历的吸收衰减与下行初至波经历吸收衰减近似相等。此时同样可以采用常规频谱比法估算层间的Q值, 如下式:

$ \ln \frac{S_{2}\left(f, T_{2}+T_{3}\right)}{S_{1}\left(f, T_{1}\right)}=C-\frac{2 \pi\left(T_{2}+T_{3}-T_{1}\right)}{Q_{\mathrm{P}, \text { eff }}} f $ (3)
图 4 VSP直达波与反射波地震采集观测系统

式中: T1为单点检波器接收的直达波旅行时间; T2为震源到T74界面的下行波旅行时间; T3为下行波到达T74界面之后, 反射波再到单点检波器的旅行时间。(3)式中, 由于反射波蕴含了观测井段下部碎屑岩地层和目的层(含裂缝的碳酸盐岩地层)的双程衰减信息, 所以与(1)式相比, 频谱比法得到的Q值需要放大一倍才能得到正确的Q值。另外, 由于反射波穿越了多套地层, (3)式中的Q值是多套地层的等效QQP, eff, 其与层Q值的关系如下:

$ \frac{1}{Q_{\mathrm{P}, \text { eff }}}=\frac{1}{T} \sum\limits_{i} \frac{\Delta T_{i}}{Q_{i}} $ (4)

式中: Qi为第i层的Q值; Ti为第i层的地震波层间旅行时。

TP327井的钻井资料表明, 从观测井段到上奥陶统的地层为平缓的碎屑岩地层, 为碎屑岩和碳酸盐岩混合沉积; 在离TP327井较近的井周围地层横向变化不大, 裂缝不发育, 层间Q值为各向同性, 且横向变化不大。目的层为中奥陶统一间房组, 主要为灰质碳酸盐岩沉积, 裂缝较为发育, 其层间Q值存在方位各向异性。从公式(4)可以看出, 对于多套地层, 若其中一个含裂缝的单层的Q值存在方位各向异性, 而其它地层的Q值为各向同性, 则整套地层的等效Q值会表现出与这个含裂缝单层的Q值相一致的方位各向异性。因此, 从VSP记录上提取的T74反射波估算的等效Q值, 其方位各向异性是由一间房组发育的裂缝引发的。

由上述等效Q值估算公式可知, 它是与频率相关的一次函数, 可用线性拟合对数振幅谱相减的结果, 其斜率为-2π(T2+T3-T1)/QP, eff, 可得:

$ Q_{\mathrm{P}, \mathrm{eff}}=-\frac{2 \pi f}{\ln \left[\frac{S_{2}\left(f, T_{2}+T_{3}\right)}{S_{1}\left(f, T_{1}\right)}\right]}\left(T_{2}+T_{3}-T_{1}\right) $ (5)

为了取得较准确的Q值, 需要对原始数据进行保幅处理。运用矢量中值滤波的方法分离下行直达波与上行反射波, 如图 5所示, 初至波起跳干脆, 可以准确读取初至时间; 反射波能量强、信噪比高, 波组特征明显、连续性好、分辨率较高, 地震数据品质较好[26-27]

图 5 预处理分离出的单炮集下行直达波(a)和上行反射波(b)

由于本文等效Q值估算使用了T74反射波信息, 因此需要在上行反射波炮集数据中准确识别T74反射波。首先, 根据密度、P波速度测井曲线合成地震记录; 之后在走廊叠加剖面上识别出T74反射波(图 6); 最后, 根据T74反射波在走廊叠加剖面上的特征, 在单炮集的上行波剖面上标定出T74反射波(图 7)。由此, 得到单炮集上行波T74的旅行时间大约为3950ms, 且旅行时间的大小随偏移距的变化而上下变化, 但其波组特征不会改变, 以此可以识别出炮集上行波数据中的T74反射波。

图 6 走廊叠加剖面的T74反射波组标定
图 7 零偏移距拉平的上行波与走廊叠加的T74反射波标定

由于反射波普遍存在噪声较大的问题, 造成反射波的主频高于直达波, 这与地震波传播后主频衰减规律不符, 为了在去噪时尽可能保留有效频带信息, 提取了T74上部2500~3000ms时间段地震数据的频谱(图 8), 分析后认为有效频带为10~40Hz, 而高于60Hz的主要为噪声。经过滤波处理, 提取了初至波和T74反射波信息, 得到下行直达波和T74反射波信息(图 9a图 9b)。并对其进行频谱分析, 结果如图 9c图 9d所示, 可见直达波主频为34Hz左右, 归一化振幅大于0.6的频带范围为10~50Hz; 由图 9d可见, T74反射波主频为27Hz左右, 归一化振幅大于0.6的频带集中在15~40Hz。从两者的频谱图中明显可见地震波在深层主频变低、频带变窄。将所有角度的地震资料都经过上述处理后, 得到了可以用于等效Q值估算的100m和150m偏移距的全方位地震信息。

图 8 反射波炮集T74界面上部2500~3000ms时间段的频谱
图 9 提取的单炮集直达波(a)和T74反射波(b)及其相应的归一化频谱(c, d)

在估算Q值前, 还需要准确拾取初至时间和T74反射波旅行时间。从图 10a的雷达图来看, 初至时间较为稳定, 质量较好; 从图 10b的雷达图来看, T74反射波旅行时间在某些道存在交叉, 尤其第26级检波器, 不同方位的旅行时间相差较大, 整体质量较差, 在计算时需要考虑其带来的误差。由于每个角度区单炮集数据有26道相邻检波器, 在进行Q值估算时, 首先采用这26道地震数据都参与计算, 由于估算的Q值受到所选地震道的影响, 为了消除选取的地震道不同带来的偶然性误差, 我们将不同方位角区间的26道数据的频谱进行叠加, 这样既能最大可能保留有效信息, 又能突出该方位的差异性。然后, 分别对选取的100m和150m偏移距, 利用VSP反射波频谱比法估算叠加后的随方位角变化的等效Q值。

图 10 26级检波器的初至时间(a)及T74反射波旅行时间(b)
3 Q值各向异性分析

假设所研究的地层裂缝只有一个主方位, 现有研究表明, 裂缝层的品质因子Q值最大值方向平行于裂缝走向, 最小值方向垂直于裂缝走向[10], 则可以通过对选取的12个方位估算的Q值进行椭圆拟合[19], 用长轴方向来表征裂缝的发育方位, 长短轴之比来表征Q各向异性程度(图 11)。

$ M=\frac{B}{A} \times 100 \% $ (6)
图 11 椭圆拟合裂缝走向(φ为拟合方位角)

式中: MQ各向异性程度; A为椭圆拟合长轴的长度; B为椭圆拟合短轴的长度。

由于叠加信息更能在较大尺度上反映地下综合特征, 因此在统计结果上, 其所表征的信息更能代表该区裂缝发育主方位。图 12a图 12b是偏移距分别为100m和150m的叠加等效Q值随方位角变化的雷达图。为了对Q值进行椭圆拟合, 需要将不同方位角的Q值投影到直角坐标系中, 以雷达图的圆心为直角坐标系的原点, 将不同方位角对应的Q值分解成具有QxQy信息的直角坐标。图 12c图 12d是叠加等效Q值在直角坐标系中椭圆拟合的结果, 从结果来看椭圆长轴基本都指向北东(NE)向。叠加Q值椭圆拟合后, 虽然有了计算结果, 但其数据较为单一。所以对26级检波器, 在偏移距为100m和150m的26道等效Q值各自进行椭圆拟合, 统计其计算的方位角和椭圆长短轴比。根据统计结果, 绘制出26级检波器的Q各向异性程度(图 13a)和表征裂缝方位的玫瑰花图(图 13b)。结果表明, 裂缝发育主方位为北东向。在100m偏移距时, Q各向异性程度平均值为5.41%, 在150m偏移距时Q各向异性程度平均值为6.62%, 两者整体统计Q各向异性程度平均值为6.01%。

图 12 偏移距为100m的叠加等效Q值(a)和偏移距为150m的叠加等效Q值(b)及相应的椭圆拟合结果(c, d)
图 13 26级检波器的Q各向异性程度(a)及裂缝方位玫瑰花图(b)

研究表明, 塔里木盆地奥陶系碳酸盐岩储层已获得高产的工业油气流, 其储层发育受控于沿断裂带发生的岩溶作用, 储集空间以溶蚀孔、洞和构造裂缝为主[3, 23-24]。通过该区域构造演化分析, 在海西运动时期, 该地区受到北西-南东(NW-SE)向的区域压扭应力作用, 发育走向为北东-南西(NE-SW)向的区域性逆断层。同时刘志远等[1]对托甫台地区一间房组的裂缝分布研究表明该区域裂缝受断层控制, 裂缝走向基本与断层走向保持一致, 主要集中在北东(NE)方向。邹榕等[28]根据托甫台区块奥陶系地层成像测井资料, 解释了该区域主要发育北东(NE)向高角度裂缝和北西(NW)向低角度裂缝, 与本文利用Q各向异性预测的裂缝主方位基本一致, 证明了本文预测的裂缝发育特征符合该区域断层发育的构造应力场背景。

4 结论

本文针对某些区域VSP资料采集时, 存在检波器少、目的层段质控较差或者观测井段在目的层之上的问题, 提出了同时利用VSP初至波和反射波的Q值估算方法, 并应用于托甫台地区的Walkaround VSP实际地震资料。利用本文方法, 提取了一间房组的等效Q值, 并对Q各向异性进行了分析, 对一间房组的裂缝发育进行了预测, 通过与工区地质资料的印证, 表明本文提出的利用Q各向异性预测裂缝方位的方法和技术流程可靠有效, 具有一定的实际应用价值。在实际应用中, 该方法有两个关键的处理环节: ①需要对VSP反射波进行频谱整形, 消除噪声带来的虚假高频; ②在VSP上行波中识别出深部目标层的反射。

参考文献
[1]
刘志远, 冒海军, 鄢宇杰, 等. 塔河油田托甫台区块奥陶系一间房组裂缝分布特征[J]. 地质科技情报, 2019, 38(5): 64-70.
LIU Z Y, MAO H J, YAN Y J, et al. Distribution characteristics of fractures in the Ordovician Yijianfang Formation in Tuofutai Area, Tahe Oilfield[J]. Geological Science and Technology Information, 2019, 38(5): 64-70.
[2]
柳建华, 蔺学旻, 张卫锋, 等. 塔河油田碳酸盐岩储层有效性测井评价实践与思考[J]. 石油与天然气地质, 2014, 35(6): 950-958.
LIU J H, LIN X M, ZHANG W F, et al. Logging evaluation of carbonate reservoir effectiveness in Tahe oilfield, Tarim Basin[J]. Oil & Gas Geology, 2014, 35(6): 950-958.
[3]
何治亮, 云露, 尤东华, 等. 塔里木盆地阿-满过渡带超深层碳酸盐岩储层成因与分布预测[J]. 地学前缘, 2019, 26(1): 13-21.
HE Z L, YUN L, YOU D H, et al. Genesis and distribution prediction of the ultra-deep carbonate reservoirs in the transitional zone between the Awati and Manjiaer depressions, Tarim Basin[J]. Earth Science Frontiers, 2019, 26(1): 13-21.
[4]
黎书琴, 李忠, 张白林. 利用横波分裂预测裂缝[J]. 石油地球物理勘探, 2009, 44(S1): 130-134.
LI S Q, LI Z, ZHANG B L. Application of shear wave splitting to predict fracture[J]. Oil Geophysical Prospecting, 2009, 44(S1): 130-134.
[5]
刘振峰, 曲寿利, 孙建国, 等. 地震裂缝预测技术研究进展[J]. 石油物探, 2012, 51(2): 191-198.
LIU Z F, QU S L, SUN J G, et al. Progress of seismic fracture characterization technology[J]. Geophysical Prospecting for Petroleum, 2012, 51(2): 191-198. DOI:10.3969/j.issn.1000-1441.2012.02.013
[6]
王成礼, 何惺华, 张庆红, 等. 多方位VSP多地震属性裂缝预测方法[J]. 油气地球物理, 2018, 16(2): 22-30.
WANG C L, HE X H, ZHANG Q H, et al. Multi-azimuth VSP multi seismic attribute fracture prediction method[J]. Petroleum Geophysics, 2018, 16(2): 22-30.
[7]
陈占国, 陈林, 张卫红. 基于walkaround VSP的裂缝检测方法及应用[J]. 石油物探, 2015, 54(6): 745-754.
CHEN Z G, CHEN L, ZHANG W H. Fracture detection method based on walkaround VSP and its application[J]. Geophysical Prospecting for Petroleum, 2015, 54(6): 745-754. DOI:10.3969/j.issn.1000-1441.2015.06.013
[8]
ZHU Y P, TSVANKIN I. Plane-wave propagation in attenuative transversely isotropic media[J]. Geophysics, 2006, 71(2): T17-T30. DOI:10.1190/1.2187792
[9]
ZHU Y P, TSVANKIN I. Plane-wave attenuation anisotropy in orthorhombic media[J]. Geophysics, 2007, 72(1): D9-D19. DOI:10.1190/1.2387137
[10]
尹志恒, 魏建新, 狄帮让, 等. 利用Q值各向异性识别裂缝走向[J]. 石油地球物理勘探, 2011, 46(3): 429-433.
YIN Z H, WEI J X, DI B R, et al. Fracture orientation detection using Q anisotropy[J]. Oil Geophysical Prospecting, 2011, 46(3): 429-433.
[11]
程志国, 娄兵, 姚茂敏, 等. VSP井控Q值提取和补偿方法在玛湖地区的应用[J]. 物探化探计算技术, 2015, 37(6): 749-753.
CHENG Z G, LOU B, YAO M M, et al. Application of VSP well-controlled Q-extraction and compensation method in Mahu area[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2015, 37(6): 749-753. DOI:10.3969/j.issn.1001-1749.2015.06.13
[12]
赵锐锐, 孙成禹, 尚帅. VSP井驱Q补偿在碳酸盐储层识别中的应用研究[J]. 物探化探计算技术, 2018, 40(1): 49-53.
ZHAO R R, SUN C Y, SHANG S. Applied research of VSP data driven Q compensation in carbonate reservoir[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2018, 40(1): 49-53. DOI:10.3969/j.issn.1001-1749.2018.01.08
[13]
辛可锋, 李振春, 王永刚, 等. 地层等效吸收系数反演[J]. 石油物探, 2001, 40(4): 14-20.
XIN K F, LI Z C, WANG Y G, et al. Formation equivalent absorption coefficient inversion[J]. Geophysical Prospecting for Petroleum, 2001, 40(4): 14-20. DOI:10.3969/j.issn.1000-1441.2001.04.003
[14]
白利娜, 赵凌云. 时间域属性组合法提取品质因子Q[J]. 石油地球物理勘探, 2015, 50(3): 436-443.
BAI L N, ZHAO L Y. Quality factor extraction with an attribute combination method in time domain[J]. Oil Geophysical Prospecting, 2015, 50(3): 436-443.
[15]
余连勇, 范廷恩, 胡光义, 等. 时间域质心频移法估算品质因子Q[J]. 西南石油大学学报(自然科学版), 2014, 36(4): 55-62.
YU L Y, FAN T E, HU G Y, et al. Estimating quality factor Q with time-domain centroid frequency shift method[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2014, 36(4): 55-62.
[16]
DASGUPTA R, CLARK R A. Estimation of Q from surface seismic reflection data[J]. Geophysics, 1998, 63(6): 2120-2128. DOI:10.1190/1.1444505
[17]
QUAN Y L, HARRIS J M. Seismic attenuation tomography using the frequency shift method[J]. Geophysics, 1997, 62(3): 895-905. DOI:10.1190/1.1444197
[18]
WU Z W, WU Y J, GUO S, et al. Q-factor estimation in CMP gather and the continuous spectral ratio slope method[J]. Applied Geophysics, 2018, 15(3/4): 481-490.
[19]
GUREVICH B, PEVZNER R. How frequency dependency of Q affects spectral ratio estimates[J]. Geophysics, 2015, 80(2): A39-A44. DOI:10.1190/geo2014-0418.1
[20]
崔庆辉, 王静. 频谱比法求取品质因子的精度分析[J]. 重庆科技学院学报(自然科学版), 2015, 17(1): 40-43.
CUI Q H, WANG J. Accuracy analysis about the spectral ratio method to calculate the quality factor[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2015, 17(1): 40-43. DOI:10.3969/j.issn.1673-1980.2015.01.011
[21]
王宗俊, 胡光义, 范廷恩, 等. Q值提取中的窗口效应[J]. 石油地球物理勘探, 2015, 50(1): 118-122.
WANG Z J, HU G Y, FAN T E, et al. Window effects for quality factor Q estimation[J]. Oil Geophysical Prospecting, 2015, 50(1): 118-122.
[22]
宫同举, 孙成禹, 彭洪超, 等. 几种提取品质因子方法的对比分析[J]. 勘探地球物理进展, 2009, 32(4): 252-256.
GONG T J, SUN C Y, PENG H C, et al. Comparison of several computational methods of quality factor[J]. Progress in Exploration Geophysics, 2009, 32(4): 252-256.
[23]
彭守涛, 何治亮, 丁勇, 等. 塔河油田托甫台地区奥陶系一间房组碳酸盐岩储层特征及主控因素[J]. 石油实验地质, 2010, 32(2): 108-114.
PENG S T, HE Z L, DING Y, et al. Characteristics and major controlling factors of carbonates reservoir in the middle Ordovician Yijianfang formation, Tuofutai area, Tahe oilfield[J]. Petroleum Geology & Experiment, 2010, 32(2): 108-114. DOI:10.3969/j.issn.1001-6112.2010.02.002
[24]
苏永辉, 赵锡奎, 李坤, 等. 阿克库勒凸起构造演化与油气成藏期[J]. 断块油气田, 2010, 17(2): 156-160.
SU Y H, ZHAO X K, LI K, et al. Tectonic evolution and hydrocarbon accumulation periods in Akekule Uplift[J]. Fault-Block Oil & field, 2010, 17(2): 156-160.
[25]
ZHANG H H, LU J, CHEN B C, et al. Fluid prediction of a deep carbonate reservoir using walkaround 3D-3C vertical seismic profiling data[J]. Journal of Geophysics and Engineering, 2020, 17(1): 35-52.
[26]
LU J, WANG Y, CHEN J Y, et al. P-and S-mode separation of three-component VSP data[J]. Exploration Geophysics, 2019, 50(4): 430-448.
[27]
YANG Y Y, LU J, WANG Y. Vertical seismic profile wavefield separation using median filtering constrained by the linear radon transform[J]. Applied Sciences, 2018, 8(9): 1-19.
[28]
邹榕, 徐中祥, 张晓明, 等. 顺北和托甫台区块奥陶系断裂结构单元测井响应特征初探[J]. 油气藏评价与开发, 2020, 10(2): 18-23.
ZOU R, XU Z X, ZHANG X M, et al. Log response characteristics of Ordovician fracture unit in Shunbei and Tuofutai block[J]. Reservoir Evaluation and Development, 2020, 10(2): 18-23.