石油物探  2019, Vol. 58 Issue (1): 103-111, 129  DOI: 10.3969/j.issn.1000-1441.2019.01.012
0
文章快速检索     高级检索

引用本文 

韩璇颖, 印兴耀, 曹丹平, 等. 基于分段快速模拟退火的零偏VSP全波形反演[J]. 石油物探, 2019, 58(1): 103-111, 129. DOI: 10.3969/j.issn.1000-1441.2019.01.012.
HAN Xuanying, YIN Xingyao, CAO Danping, et al. Zero-offset VSP velocity inversion with FWI using segmented fast simulated annealing[J]. Geophysical Prospecting for Petroleum, 2019, 58(1): 103-111, 129. DOI: 10.3969/j.issn.1000-1441.2019.01.012.

基金项目

国家自然科学基金(U1562215, 41604101)和国家油气重大专项(2016ZX05024004, 2017ZX05009001, 2017ZX05036005, 2017ZX05032003)共同资助

作者简介

韩璇颖(1992—), 女, 硕士, 主要从事地球物理反演方法研究。Email:xuanyhan@163.com

通信作者

印兴耀(1962—), 男, 教授, 博士, 博士生导师, 主要从事勘探地球物理理论研究

文章历史

收稿日期:2017-10-23
改回日期:2018-10-28
基于分段快速模拟退火的零偏VSP全波形反演
韩璇颖1,2 , 印兴耀2 , 曹丹平2 , 梁锴2     
1. 中国石油化工股份有限公司石油物探技术研究院, 江苏南京 211103;
2. 中国石油大学(华东)地球科学与技术学院, 山东青岛 266580
摘要:基于常规模拟退火算法的零偏VSP全波形反演面临着计算量大和耗时长的问题。为此提出了一种不同阶段对应不同扰动模型和退火方式的分段快速模拟退火(segmented fast simulated annealing, SFSA)反演策略, 以提高零偏VSP资料全波形反演的效率。在反演前期采用大模型扰动空间和较慢温度衰减速度, 充分发挥全局搜索能力, 而在后期引入限制因子产生扰动模型, 在迭代不断增加的时候逐渐减小模型的扰动空间, 同时采用较快的温度衰减速度, 有效提高反演的速度, 使反演快速收敛到最优解。基于相同的初始温度和马尔可夫链长度, 分别利用基于SFSA和非常快速模拟退火(very fast simulated annealing, VFSA)方法进行零偏VSP纵波速度全波形反演测试。结果表明, 基于SFSA的反演方法的反演效率提高约50%, 在迭代次数更少的条件下能获得更好的反演效果。基于SFSA的零偏VSP全波形反演具有高效和高精度的特点, 其反演结果为地震地质层位标定、成果解释及油气预测奠定了基础。
关键词零偏VSP    全波形反演    SFSA    截断迭代次数    限制因子    
Zero-offset VSP velocity inversion with FWI using segmented fast simulated annealing
HAN Xuanying1,2, YIN Xingyao2, CAO Danping2, LIANG Kai2     
1. Sinopec Geophysical Research Institute, Nanjing 211103, China;
2. School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China
Foundation item: This research is financially supported by the National Nature Science Foundation of China (Grant Nos.U1562215 and 41604101) and the National Grand Project for Science and Technology (Grant Nos.2016ZX05024004, 2017ZX05009001, 2017ZX05036005 and 2017ZX05032003)
Abstract: The application of the full-waveform inversion technique based on the conventional simulated annealing algorithm to zero-offset VSP data is time consuming and complex.This paper therefore proposes an efficient segmented fast simulated annealing (SFSA) strategy, which uses different disturbance models and annealing methods at different stages to improve the waveform inversion efficiency of zero-offset VSP data.In the early stage of inversion, large model perturbation space and slow decay rate of temperature were adopted to fully perform global search; in late stage, the perturbation model with restriction factor was adopted; the model perturbation space was gradually reduced as the iteration increased, with a faster decay rate of temperature, to improve the efficiency of the inversion and help the algorithm converge to the optimal solution quickly.Finally, SFSA and conventional very fast simulated annealing (VFSA) algorithms were compared for P-wave velocity inversion of zero-offset VSP.The test results showed that the SFSA algorithm can improve the inversion efficiency by 50%, while a better inversion effect could be obtained using less iteration.The proposed method could lay the foundation for the calibration of seismic geological horizons, seismic interpretation, and reservoir prediction.
Keywords: zero-offset VSP    full waveform inversion (FWI)    segmented fast simulated annealing (SFSA)    truncation iteration number    restriction factor    

VSP技术作为一种井中地震勘探方法, 在地面地震、钻井和地质资料间发挥了桥梁作用。利用VSP资料可获得井口附近地震频带尺度的可靠参数, 利用该参数可进行地震地质层位的标定, 成果解释及油气预测[1-2]

STEWART[3]和LINES等[4]系统地研究了利用旅行时反演VSP资料速度的方法; 邹强等[5]利用阻抗和旅行时联合反演层速度; 姚忠瑞等[6]以北101井VSP测井为例, 利用零偏VSP资料求取横波速度; 受旅行时拾取的误差和地震波能量等多种因素的影响, 得到的横波速度不准确[7]。全波形反演充分利用了旅行时及波场相关信息(如振幅、频率和相位等)提高了反演的精度[8-9]。OWUSU等[10]利用阿拉伯湾VSP资料进行全波形反演建立了合理的速度模型; EGOROV等[11]基于全波形反演得到了VSP资料的纵波速度及其数值范围。

采用模拟退火(simulated annealing, SA)算法进行零偏VSP全波形反演可以克服传统局部优化算法过于依赖初始模型和易陷入局部极值的不足[12-15]。作为一种非线性优化算法, 在足够的模型扰动和迭代次数以及严格退火方案的条件下, SA算法是有效的[16], 但在实际应用中, 因难以满足上述条件而导致该算法效率不高。尽管零偏VSP资料的数据量小, 但将SA算法应用于耗时长﹑计算量大的零偏VSP全波形反演, 效率问题不容忽视。

许多学者对SA算法加以改进以提高效率, INGBER[17]提出了一种VFSA算法; 刘海飞等[18]将局部搜索能力较强的单纯形法和鲍威尔法引入SA算法, 形成了基于SA算法的全局混合反演方法。李亚楠等[19]提出了一种改进的自适应差分演化算法, 该算法融入了SA思想, 提高了全局搜索能力。虽然这些改进在一定程度上解决了SA算法耗时长的问题, 但将SA算法应用于零偏VSP全波形反演, 计算效率仍然较低。改进的算法虽然提高了局部搜索能力但一定程度上限制了整个算法的全局搜索能力, 不易得到精确解。

本文在VFSA算法理论框架下, 将高效、高精度的SFSA反演策略应用于零偏VSP全波形反演, 在不同阶段采用了不同的扰动模型和退火方式, 反演前期采用大扰动空间和较慢温度衰减速度, 充分发挥全局搜索能力, 而后期采用小扰动空间和较快温度衰减速度, 有效提高了局部搜索能力及收敛速度, 最终在井孔周围获得了可靠的地层速度, 为精确的时深转换及油气预测奠定了基础。

1 零偏VSP全波形反演的理论基础

全波形反演的基础为时间域声波波动方程有限差分正演。当震源为零时, 二维各向同性均匀介质的声波方程为:

$ \frac{{\partial f}}{{\partial {t^2}}}-{v^2}\nabla {^2}f = 0 $ (1)

式中:v为纵波速度; f为波场; t为波传播的时间。我们采用空间四阶时间二阶交错网格差分方法[20]进行正演模拟。相较于地面地震资料, 零偏VSP资料的数据量小, 有利于全局优化算法的应用。

地震全波形反演的目标函数, 可用于衡量真实数据和模拟数据之间的匹配程度。将L2范数作为目标函数, 其形式为:

$ F\left( v \right) = \frac{1}{2}\left\| {d{\rm{-}}f\left( v \right)} \right\|_2^2 $ (2)

式中:F为目标函数; d为真实的零偏VSP资料; f(v)为当前速度模型的正演数据。在提高算法的效率同时为了避免陷入局部极值, 本文将SFSA反演策略应用于零偏VSP全波形反演, 在反演的前、后阶段分别采用相匹配的退火计划和扰动模型, 前期侧重保留算法的全局优化性能, 后期强化算法的局部搜索性能, 总体上提高了反演的寻优效率及精度。

2 SA算法原理 2.1 退火计划

SA算法采用不断降低温度的手段来控制整个算法的进程。算法通常包括两种形式:快速衰减的温度和长马尔可夫链以及缓慢衰减的温度和短马尔可夫链。我们需要综合考虑计算效率和结果精度来平衡温度的衰减速度和马尔可夫链长度。温度衰减过慢, 会使算法的效率变低, 反之, 则可能陷入局部极值[21]。通常我们选取的温度衰减速度较小, 这是为了减小所需马尔可夫链的长度。本文采用的退火计划为[22]:

$ T\left( k \right) = {T_0}{\alpha ^{{k^{1/M}}}} $ (3)

式中:T为当前温度; k为迭代次数; T0为初始温度; M为反演的参数数量(本文中M=1);α为接近1.0的常数, 表示衰减的快慢, 通常为0.7≤α<1.0。

2.2 引入限制因子的扰动模型的产生

SA算法的新模型基于当前模型扰动得出。蒋龙聪等[23]基于非均匀变异的思想提出了新模型参数公式为:

$ x' {_i} = {x_i} + {y_i}({x_{i{\rm{max}}}}{\rm{-}}{x_{i{\rm{min}}}}) $ (4)
$ {y_i} = \xi {\left( {1{\rm{-}}\frac{T}{N}} \right)^a}{\rm{sgn}}\left( {\xi {\rm{-}}0.5} \right) $ (5)

式中:xi为当前模型参数; xi为扰动后的模型参数; ximin, ximax分别为xi的最小和最大取值范围; yi为扰动模型; ξ是0和1之间的随机数; N为与最高温度和最低温度有关的最大迭代次数; a为表示模型非均匀性程度的常数(本文中a=3)。

为进一步提高局部搜索能力和效率, 本文在扰动模型中引入了一个限制因子, 该因子与迭代次数k成反比, 目的是在迭代不断增加的时候逐渐减小模型的扰动空间, 即随着迭代次数的增加, 扰动模型将在和当前模型不断逼近的范围中产生, 从而更快得到最优解。新公式可以表示为:

$ {y_i} = b\left( k \right)\xi {\left( {1{\rm{-}}\frac{T}{N}} \right)^a}{\rm{sgn}}\left( {\xi {\rm{-}}0.5} \right) $ (6)

式中:b为限制因子, b(k)=1/(mk), 其中系数m控制模型扰动空间的变化。

2.3 VFSA算法理论框架下的SFSA反演策略

基于VFSA算法理论框架, 在不同阶段分别采用不同的扰动模型和退火方式, 相较于常规VFSA算法, 本文提出了一种更具灵活性﹑高效和高精度的SFSA反演策略。根据该策略, 可根据实际需要将反演划分成不同的阶段, 分别调节不同阶段时模型扰动空间大小和温度衰减的速度。基本原则为在充分发挥全局优化性能寻找最优解范围的同时, 快速收敛到最优解。本文将反演阶段划分为两段, 迭代前期采用大扰动空间和较慢的温度衰减速度; 迭代后期采用小扰动空间和较快的温度衰减速度。这里引入一个参数:截断迭代数K, 以确定两段法的前、后期次。在前期, 当迭代次数小于截断迭代数K时, 扰动模型使用全局扰动模式, 遍历整个解空间, 采用传统的VFSA算法, 可得:

$ {y_i} = T{\rm{sgn}}\left( {\xi- 0.5} \right)\left[{{{\left( {1 + \frac{1}{T}} \right)}^{|2\xi-1|}}-1} \right] $ (7)

与此时扰动模式相匹配的退火计划为α=0.99的公式(3), α值较大, 温度衰减缓慢, 可有效地搜索和锁定最优解的范围。在反演后期, 即迭代次数大于截断迭代数K时, 需快速收敛到最优解, 为提高后期局部搜索的能力, 我们使用公式(6)生成扰动模型, 随着迭代次数的增加, 扰动空间不断变小, 不断逼近最优值, 相应的退火计划为α=0.97的公式(3), α值较小, 温度的衰减速度快。根据不同阶段的目的和特点, 采用不同的公式, 可提高整个反演过程的效率和精度。

3 测试及应用 3.1 系数测试

本文正演模拟的纵波速度模型如图 1a所示, 最大深度为900 m; 空间采样间隔Δxz=10 m; 时间采样间隔为1 ms; 爆炸震源位于0处, 产生主频为30 Hz的雷克子波。在偏移距为20 m处设置井位进行观察。图 1b为正演得到的零偏VSP资料的地震记录。

图 1 纵波速度模型(a)和零偏VSP地震记录(b)

根据SFSA零偏VSP全波形反演的效果进行系数测试以确定mK的最佳值。系数测试的初始温度为10℃, 终止温度为1×10-6 ℃, 马尔科夫链长为15, 迭代次数为529。首先设定m值, 取K=10, 50, 100, 150, 200, 300时分别进行测试, 反演效果最好的为该条件下的最佳K值; 然后设定K值, 取m=1, 2, 3, 4, 10, 50时分别进行测试, 反演效果最好的为该条件下的最佳m值。需要注意的是, 当m<1时, 迭代次数k略大于截断迭代数K, 反演后期开始时, 模型的扰动空间陡增(图 2a), 会使得前期得到的较小最优解空间没有意义, 不符合随着迭代次数增加模型的空间扰动量不断减小的趋势。当m=0.5时, 反演得到的速度与模型速度的对比如图 2b所示, 误差较大(图 2c), 反演效果不理想, 因此m的值不应小于1。

图 2 m=0.5时的反演结果 a 空间扰动量随迭代次数的变化情况; b 反演得到的速度与模型速度的对比; c 速度反演的误差

m=3的时候, 速度反演结果如图 3所示, 可以看出, 当K值较小(图 3a)时, 反演结果不理想; 当K=100(图 3b)时, 反演的速度和模型速度对比误差最小, 反演结果可靠; 当K值较大(图 3c)时, 结果同样不理想。从温度和扰动空间随迭代次数的变化情况(图 4)可以看出, K值较小时(图 4a), 温度降低快, 尚未得到最佳扰动模型空间时, 空间扰动量已经变小, 算法易陷入局部极值; 当K=100时(图 4b), 前期温度降低慢, 空间扰动量较大利于充分寻优, 后期温度快速降低, 空间扰动量无突变的减小, 变化较为合理; 当K值较大时(图 4c), 反演后期空间扰动量陡降, 会使扰动模型出现突变, 不利于找到速度的最优解。结合m=3且K=50, 150, 200的其他3组测试结果表明, K为[100, 150]时, 反演结果可靠。根据m=1, 2, 4, 10, 50时的测试结果可知, K取值[100, 150]最合理。由于不同m对应最佳K的取值范围相同, 故仅需对该范围内任意K值(如K=100)时m=1, 2, 3, 4, 10, 50分别进行反演测试。K=100时, 反演结果和模型的平均相对误差依次为2.35%, 0.60%, 0.53%, 0.51%, 3.64%, 10.05%。图 5显示了K=100时部分m值的反演结果和误差曲线, 可以看出, m太小或者太大均会导致不合适的扰动空间变化, 影响反演的效果, m为[2, 4]时, 反演效果较理想。下文均采用K=100, m=3进行反演。

图 3 不同K值对应的反演结果与真实值对比(m=3) K=10; b K=100; c K=300
图 4 温度和空间扰动量随迭代次数的变化情况 K=10; b K=100; c K=300
图 5 不同m值对应的反演结果及误差曲线(K=100) a 反演的速度与真实速度的对比; b 速度反演的误差
3.2 零偏VSP纵波速度反演

分别采用VFSA和SFSA反演零偏VSP资料的纵波速度。为验证SFSA反演的高效性和高精度性, 我们进行了两组测试:反演Ⅰ和反演Ⅱ。初始速度均为1 500 m/s, 终止温度均为1×10-6 ℃。

反演Ⅰ的初始温度为100℃, 马尔可夫链长度为200, VFSA反演和SFSA反演的迭代次数分别为912和604。反演Ⅰ的结果及误差对比如图 6所示。分别将图 6中两种反演方法得到的地震记录与真实模型得到的地震记录(h=600 m)进行对比, 结果如图 7所示, 可以看出, 在反演Ⅰ中, 两种反演方法都得到了理想的效果, 但SFSA法迭代次数少, 用时少, 且误差小, 相较于VFSA, 其效率提高了约50%。

图 6 反演Ⅰ的结果 a VFSA反演得到的速度与真实速度; b SFSA反演得到的速度与真实速度; c 速度反演的误差
图 7 反演Ⅰ得到的地震记录与真实模型得到的地震记录(h=600 m) a VFSA; b SFSA; c 地震记录的误差

反演Ⅱ的初始温度为10℃, 马尔可夫链长度为20, VFSA反演和SFSA反演的迭代次数分别为798和529, SFSA反演效率约为VFSA反演效率的1.5倍。图 8a图 8b分别为VFSA反演和SFSA反演得到的速度与模型速度的对比, 图 8c为两种方法误差的对比, 图 9为两种方法反演得到的速度对应的地震记录与模型地震记录的对比, 可以看出VFSA反演得到的结果误差较大, 而采用SFSA反演可得到可靠解。图 10为反演Ⅱ中分别采用VFSA反演和SFSA反演时能量随迭代次数的变化情况。能量代表着误差, 在较低的初始温度和较短的马尔可夫链长度的情况下, VFSA反演后期能量收敛的速度很慢, 故误差较大; 而SFSA反演收敛速度相对较快, 故在更小的迭代次数条件下SFSA反演可获得更好的效果。基于与反演Ⅱ相同的条件进行添加噪声测试, 当地震记录的信噪比RSN分别为4和2时, 反演结果及其与模型值的误差分别如图 11图 12所示, 可以看出, SFSA反演比VFSA反演的效率和精度更高。

图 8 反演Ⅱ的结果 a VFSA反演得到的速度与真实速度; b SFSA反演得到的速度与真实速度; c 速度反演的误差
图 9 利用反演Ⅱ的模型得到的地震记录与真实模型得到的地震记录(h=600 m) a VFSA; b SFSA; c 地震记录的误差
图 10 反演Ⅱ中能量随迭代次数变化情况 a VFSA; b SFSA
图 11 添加噪声测试结果(RSN=4) a VFSA反演得到的速度与真实速度; b SFSA反演得到的速度与真实速度; c 速度反演的误差
图 12 添加噪声测试结果(RSN=2) a VFSA反演得到的速度与真实速度; b SFSA反演得到的速度与真实速度; c 速度反演的误差
4 结束语

本文提出将SFSA反演策略应用于零偏VSP全波形反演。以两段法为例, 将反演分为前、后两个阶段, 前期有效锁定最优解的范围, 后期反演结果快速收敛。模型测试证明, SFSA反演可明显提高收敛速度, 效率约为基于VFSA反演的1.5倍, 还可以在比VFSA反演迭代次数更少的情况下获得更可靠的纵波速度。基于SFSA的零偏VSP全波形反演具有高效性和高精度性, 这为之后地震地质层位标定, 成果解释及油气预测奠定了基础。本文仅讨论了反演过程中mK的取值范围, 二者最优值的选取还需要进一步研究。

参考文献
[1]
CAO D P, YIN X Y, ZHANG F C. Joint inversion of 3D seismic, VSP and crosswell seismic data[J]. Expanded Abstracts of 79th Annual Internat SEG Mtg, 2009, 2373-2377.
[2]
曹丹平.多尺度地震资料正反演方法研究[D].东营: 中国石油大学(华东), 2008
CAO D P.Method research of multiscale seismic data modeling and inversion[D]. Dongying: China University of Petroleum, 2008 http://cdmd.cnki.com.cn/Article/CDMD-10425-2009221585.htm
[3]
STEWART R R. Vertical-seismic-profile (VSP) interval velocities from traveltime inversion[J]. Geophysical Prospecting, 1984, 32(4): 608-628. DOI:10.1111/gpr.1984.32.issue-4
[4]
LINES L, BOURGEOIS A, COVEY J. Traveltime inversion of vertical seismic profiles—a feasibility study[J]. Geophysics, 1984, 49(3): 250-264. DOI:10.1190/1.1441657
[5]
邹强, 周熙襄, 钟本善. 旅行时与波阻抗联合反演求取层速度[J]. 石油地球物理勘探, 2003, 38(4): 396-399.
ZOU Q, ZHOU X X, ZHONG B S. Acquiring interval velocity by joint inversion of travel-time and wave impedance[J]. Oil Geophysical Prospecting, 2003, 38(4): 396-399. DOI:10.3321/j.issn:1000-7210.2003.04.011
[6]
姚忠瑞, 何惺华. 利用零偏VSP资料求取横波速度—以七北101井VSP测井为例[J]. 勘探地球物理进展, 2007, 30(2): 100-103.
YAO Z R, HE X H. Calculation of S-wave velocity from zero-offset VSP data:Taking the VSP data of well 101 in Qibei survey area an example[J]. Progress in Exploration Geophysics, 2007, 30(2): 100-103.
[7]
张继国, 牟风明. VSP横波速度反演实用性研究[J]. 石油地球物理勘探, 2006, 41(6): 697-701.
ZHANG J G, MU F M. Study of practicality of VSP S-wave velocity inversion[J]. Oil Geophysical Prospecting, 2006, 41(6): 697-701. DOI:10.3321/j.issn:1000-7210.2006.06.017
[8]
卞爱飞, 於文辉, 周华伟. 频率域全波形反演方法研究进展[J]. 地球物理学进展, 2010, 25(3): 982-993.
BIAN A F, YU W H, ZHOU W H. Progress in the frequency-domain full waveform inversion method[J]. Progress in Geophysics, 2010, 25(3): 982-993. DOI:10.3969/j.issn.1004-2903.2010.03.037
[9]
单蕊, 卞爱飞, 於文辉, 等. 利用叠前全波形反演进行储层预测[J]. 石油地球物理勘探, 2011, 46(4): 629-633, 667.
SHAN R, BIAN A F, YU W H, et al. Pre-stack full waveform inversion for reservoir prediction[J]. Oil Geophysical Prospecting, 2011, 46(4): 629-633, 667.
[10]
OWUSU J C, PODGORNOVA O, CHARARA M, et al. Anisotropic elastic full-waveform inversion of walkaway vertical seismic profiling data from the Arabian Gulf[J]. Geophysical Prospecting, 2016, 64(1): 38-53. DOI:10.1111/1365-2478.12227
[11]
EGOROV A, PEVZNER R, BóNA A, et al. Time-lapse full waveform inversion of vertical seismic profile data:workflow and application to the CO2CRC Otway project[J]. Geophysical Research Letters, 2017, 44(14): 7211-7218. DOI:10.1002/2017GL074122
[12]
张繁昌, 肖张波, 印兴耀. 地震数据约束下的贝叶斯随机反演[J]. 石油地球物理勘探, 2014, 49(1): 176-182.
ZHANG F C, XIAO Z B, YIN X Y. Bayesian stochastic inversion constrained by seismic data[J]. Oil Geophysical Prospecting, 2014, 49(1): 176-182.
[13]
刘汉卿, 张繁昌, 代荣获. 基于神经网络的井间地震数据外推及多尺度反演[J]. 物探化探计算技术, 2015, 37(3): 348-354.
LIU H Q, ZHANG F C, DAI R H. Extrapolating of the cross-well seismic data based on the neural network and multi-scale seismic joint inversion[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2015, 37(3): 348-354. DOI:10.3969/j.issn.1001-1749.2015.03.13
[14]
杨勤勇, 胡光辉, 王立歆. 全波形反演研究现状及发展趋势[J]. 石油物探, 2014, 53(1): 77-83.
YANG Q Y, HU G H, WANG L X. Research status and development trend of full waveform inversion[J]. Geophysical Prospecting for Petroleum, 2014, 53(1): 77-83. DOI:10.3969/j.issn.1000-1441.2014.01.011
[15]
张广智, 姜岚杰, 孙昌路, 等. 基于照明预处理的分步多参数时间域声波全波形反演方法研究[J]. 石油物探, 2017, 56(1): 31-37, 74.
ZHANG G Z, JIANG L J, SUN C L, et al. The stepped multi-parameter FWI of acoustic media in time-domain by L-BFGS method with illumination analysis[J]. Geophysical Prospecting for Petroleum, 2017, 56(1): 31-37, 74. DOI:10.3969/j.issn.1000-1441.2017.01.004
[16]
METROPOLIS N, ROSENBLUTH A W, ROSENBLUTH M N, et al. Equation of state calculations by fast computing machines[J]. The Journal of Chemical Physics, 1953, 21(6): 1086-1092.
[17]
INGBER L. Very fast simulated re-annealing[J]. Mathematical Computer Modeling, 1989, 12(8): 967-973. DOI:10.1016/0895-7177(89)90202-1
[18]
刘海飞, 阮百尧, 张赛民, 等. 基于模拟退火的全局混合反演方法及其应用[J]. 桂林工学院报, 2008, 28(3): 312-318.
LIU H F, RUAN B Y, ZHANG S M, et al. Global hybrid inversion method and application based on simulated annealing[J]. Journal of Guilin University of Technology, 2008, 28(3): 312-318.
[19]
李亚楠, 郭海湘, 黎金玲, 等. 一种基于模拟退火的参数自适应差分演化算法及其应用[J]. 系统管理学报, 2016, 25(4): 652-662.
LI Y N, GUO H X, LI J L, et al. A differential evolution algorithm with self-adaptive parameters based on simulated annealing and its applications[J]. Journal of Systems & Management, 2016, 25(4): 652-662.
[20]
陈可洋. 标量声波波动方程高阶交错网格有限差分法[J]. 中国海上油气, 2009, 21(4): 232-236.
CHEN K Y. High-order staggered-grid finite difference scheme for scalar acoustic wave equation[J]. China Offshore Oil and Gas, 2009, 21(4): 232-236. DOI:10.3969/j.issn.1673-1506.2009.04.004
[21]
陈华根, 吴健生, 王家林, 等. 模拟退火算法机理研究[J]. 同济大学学报(自然科学版), 2004, 32(6): 802-805.
CHEN H G, WU J S, WANG J L, et al. Mechanism study of simulated annealing algorithm[J]. Journal of Tongji University (Natural Science), 2004, 32(6): 802-805. DOI:10.3321/j.issn:0253-374X.2004.06.023
[22]
李宁.基于模拟退火的地质统计学反演方法研究[D].东营: 中国石油大学(华东), 2013
LI N.The Study of geostatistics inversion based on simulated annealing method[D]. Dongying: China University of Petroleum, 2013 http://cdmd.cnki.com.cn/Article/CDMD-10425-1015024722.htm
[23]
蒋龙聪, 刘江平. 模拟退火算法及其改进[J]. 工程地球物理学报, 2007, 4(2): 135-140.
JIANG L C, LIU J P. Revised simulated annealing algorithm[J]. Chinese Journal of Engineering Geophysics, 2007, 4(2): 135-140. DOI:10.3969/j.issn.1672-7940.2007.02.013