文章快速检索     高级检索
  生态与农村环境学报  2019, Vol. 35 Issue (10): 1242-1251   DOI: 10.19741/j.issn.1673-4831.2019.0192
0
粮食主产区种植业碳功能测算与时空变化规律研究
杜江 1, 罗珺 2, 王锐 1, 王新华 1    
1. 武汉轻工大学经济与管理学院, 湖北 武汉 430023;
2. 武汉软件工程职业学院马克思主义学院, 湖北 武汉 430205
摘要:根据生命周期评价思想与碳足迹原理,以8种农作物排放的CO2、CH4与N2O为对象,利用1991-2016年粮食主产区农业投入产出省级数据,测算了种植业的碳足迹。结果显示:(1)主产区碳排放总量增加38.08%,各排放源占比由大到小排序依次为水稻种植(36.76%)、农业投入(33.42%)、秸秆燃烧(17.94%)和农田氮肥施用(11.88%);(2)碳汇量增长54.28%,薯类和棉花的碳汇量逐年减少,其他农作物逐年增加,且水稻、小麦、玉米的年均碳汇量远大于其他作物;(3)碳汇以水稻为主的有江西、湖南、湖北、江苏、四川、安徽,以小麦为主的有河南、山东,以玉米为主的有黑龙江、辽宁、吉林、内蒙古、河北;(4)碳足迹(净碳排放量)表现出随时间推移先增加后降低的倒"U"型特征,1991-2016年共增长12.17%。实证结果为农业碳减排的方向与思路提供了参考。
关键词温室气体    种植业    农业碳排放    生命周期评价    碳足迹    
The Estimation and Analysis of Spatio-Temporal Change Patterns of Carbon Functions in Major Grain Producing Area
DU Jiang 1, LUO Jun 2, WANG Rui 1, WANG Xin-hua 1    
1. Department of Economics and Management, Wuhan Polytechnic University, Wuhan 430023, China;
2. School of Marxism, Wuhan Vocational College of Software and Engineering, Wuhan 430205, China
Abstract: This paper focuses on the research of eight types of farm crops and the emission of CO2, CH4 and N2O based on the concept of life cycle and the theory of carbon footprint. The carbon footprint of crops production was estimated by applying the provincial input-output data in the main grain-producing area during 1991-2016. The conclusions are shown as follows:the amount of carbon emissions in main production areas increases by 38.08%. The emission sources sorted by proportions in descending order are rice cultivation (36.76%), agricultural inputs (33.42%), straw burning (17.94%) and nitrogen application (11.88%). The amount of carbon sink increased by 54.28%. The carbon sink amount of most of crops increased annually except for tubers and cotton. Especially, the carbon sink amount of rice, wheat and corn are much larger than other crops. The provinces characterized by rice carbon sink includes Jiangxi, Hunan, Hubei, Jiangsu, Sichuan and Anhui. The provinces characterized by wheat carbon sink includes Henan and Shandong. The provinces characterized by corn carbon sink includes Heilongjiang, Liaoning, Jilin, Neimenggu and Hebei. The carbon footprint of crops is featured by "inverted-U-shape", that is, it increased first and then decreased. The footprint increased by 12.17% from 1991 to 2016. The results of the research provided references for the directions and ways of reducing the agricultural carbon emissions.
Key words: greenhouse gas    crop farming    agricultural carbon emission    life cycle analysis    carbon footprint    

1990—2011年全球由于人类活动而导致的温室气体(GHG)排放量增加54%[1]。农业是仅次于化石燃料的GHG排放源之一, 农业源GHG排放量占GHG排放总量的13.5%, 其中, 源于农业的二氧化碳(CO2)、甲烷(CH4)和一氧化二氮(N2O)排放量分别占3种气体排放总量的25%、50%和70%。中国的农业碳排放比重也较高,原国家发展和改革委员会应对气候变化司发布的《中华人民共和国气候变化第一次两年更新报告》显示, 2012年中国农业源CO2排放当量比重为7.89%, 农业源CH4、N2O排放量分别占CH4、N2O排放总量的40.9%和71.6%。

碳排放量核算方法主要有联合国政府间气候变化专门委员会(IPCC)清单法、生命周期评价法(LCA)、环境投入产出法(EIO)以及将LCA与EIO相结合的混合法(LCA-EIO)。作为LCA思想在气候变化领域的特殊应用, 碳足迹法近年得到广泛运用。碳足迹法实际上属于“生态足迹”家族, 用来衡量某种活动引起的或某种产品生产周期内的直接或间接GHG排放量[2]。农业碳排放核算在国外开始的时间较早,成果颇丰。近年, 随着各种核算方法的引入, 国内农业碳排放的实证研究逐渐增多。黄祖辉等[3]利用LCA-EIO法测算浙江省农业碳足迹, 其他绝大多数相关研究采用基于LCA的排放系数法。根据研究对象的不同, 这些研究可划分为4类:(1)以单一地区的单一农作物品种为对象, 陈中督等[4]对2004—2012年湖南双季稻生产碳排放与碳吸收的特征及其动态进行分析,胡世霞等[5]核算了湖北省2003—2013年蔬菜生产碳足迹; (2)以单一地区的多个农作物品种为对象, 有对湖北[6]、江西[7]、山东[8]、河南[9]、湖南[10-11]、四川泸州[12]等地农业碳排放量的测算; (3)以全国或多个地区的多个农作物品种为对象, 李波等[13]基于农用物资、农机、农田翻耕与灌溉等碳源, 测算了1993—2008年的农业碳排放量, 王兴等[14]核算了中国水稻生产碳足迹及其变化趋势, 韦沁等[15]利用1999—2014年时序数据测算了我国小麦、水稻和玉米的碳排放并比较了南北区域的差异, 还有针对黄淮海平原[16]、西南[17]、华北[18]、东北三省[19]等地区的测算; (4)以第一产业(农林牧渔业)为对象, 闵继胜等[20]测算了1991—2008年水稻、玉米、小麦、牲畜、家禽生产的GHG排放量, 田云等[21]基于农用物资投入、稻田、土壤、牲畜养殖等碳源测算了1995—2010年的农业碳排量。这些研究成果为人们了解农业碳排放问题提供了宝贵的资料, 但仍然存在一些不足之处:(1)测算大多以单一区域为主, 部分研究涉及到多个区域, 但是研究的农作物品种单一, 少数针对全国的研究包括了主要的农作物品种, 却只采用了时间序列数据, 无法反映碳排放的区域差异; (2)大多未能同时包括3种主要的GHG气体; (3)所有研究均采用IPCC第4次报告中提供的CH4转换指数, 但早在2013年IPCC第5次报告中其全球增温潜势(GWP)就由25调整为34;(4)多数研究没有将化肥细分为氮、磷、钾和复合肥进行分别计算。最重要的是, 目前针对粮食主产区(以下简称“主产区”)种植业碳功能测算的研究较少。为此, 笔者尝试依据LCA思想与碳足迹原理测算主产区种植业的碳排放量、碳汇量及净碳排放量,并分析其特征。

1 测算步骤、方法与数据来源 1.1 碳足迹的一般测算步骤

第一, 选择GHG种类。这要依据测算对象的类型与特征、测算的必要性、遵循的指南等条件而定, 一般应该包括CO2、CH4、N2O这3种主要气体。

第二, 设定排放层级(tier)与边界(boundary)。MATTHEWS等[22]设定了3个层级:第1层为现场直接排放; 第2层包括消耗所购买的能源(如电能)时的排放; 第3层包括前2层边界之外的其他间接排放, 如运送物资或成品、处置废弃物时产生的排放。大多研究对于是否包括第3层仍存在较大争议。由于第3层边界的界定很模糊, 如果包括这层排放源, 就会增加估计的复杂性及不确定性[22]。考虑到如果包括第3层排放源,将使得碳排放过程变得无法控制, 有学者建议在计算碳足迹时不包括这一层[23]。此外, 由于其不确定性、无法控制等原因, 各种计算温室气体排放的指南或协议(protocol)均将第3层所包括的各种排放源列为可选项(optional)。PANDEY等[24]将测定边界分为3种:(1)农作物生产边界包括从耕种到收获的所有阶段; (2)农产品成品包括加工、包装、运输等环节; (3)食物(熟食)包括熟食准备等阶段。实践中, 根据不同的层级与边界组合来测算农业碳足迹。

第三,收集排放数据。鉴于现场直接测量获取数据的方式执行与维护的成本很高,且统一与推广很困难,目前主要通过排放系数与模型进行间接估算。

第四,测算碳足迹。2013年IPCC第5次报告中CO2、CH4、N2O基于100 a的GWP系数分别为1、34、298,CO2排放当量(CO2-eq)计算公式[24-25]PGW,j=CO2排放量+CH4排放量×34+N2O排放量×298。其中,PGW, j表示第j层级的GWP,j=1,2,3。

碳足迹也可用碳排放密度与碳排放强度的形式表征,计算公式为

$ {F_{{\rm{C}},A}} = \sum\limits_{j = 1}^3 {{P_{{\rm{GW}},j}}/A} ,$ (1)
$ {F_{{\rm{C}},Y}} = \sum\limits_{j = 1}^3 {{P_{{\rm{GW}},j}}/Y} {\rm{ }}。$ (2)

式(1)~(2)中,FCA为单位面积CO2排放当量,kg·hm-2FCY为单位产值CO2排放当量,kg·万元-1A为农作物播种面积,103 hm2Y为农业总产值,亿元。

1.2 测算方法

该研究主要测算种植业田间生产过程中的碳排放, 拟采用上述第1种边界设定方式测算种植业碳足迹。根据数据的可获得性, 考虑到农业生产资料在投入田间使用前的生产、运输与储存过程中释放的CO2也是农业碳排放的重要组成部分, 研究包括3个层级的碳排放源:第1层级直接排放包括农田耕作及土壤的CO2、CH4、N2O排放, 农业机械消耗化石燃料所产生的CO2排放, 田间秸秆燃烧产生的CO2排放; 第2层间接排放包括由于农田灌溉电能消耗所产生的碳排放; 第3层间接排放包括氮肥、磷肥、钾肥、复合肥、农药、农膜等农业生产要素在生产、运输、储存及使用过程中产生的碳排放。排放当量计算公式为

$ {E_{{\rm{GWP}}, {\rm{C}}{{\rm{O}}_2}}} = {E_{{\rm{C}}{{\rm{O}}_2}, {\rm{input}}}}{\rm{ + }}{E_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}}_{, {\rm{straw}}} + {E_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}}_{, {\rm{paddy}}} \times 34 + {E_{{{\rm{N}}_{\rm{2}}}{\rm{O}}, {\rm{soil}}}} \times 298,$ (3)
$ {E_{{\rm{C}}{{\rm{O}}_{\rm{2}}}, {\rm{input}}}} = {X_1} \times {\delta _1} + {X_2} \times {\delta _2} + {X_3} \times {\delta _3} + {X_4} \times {\delta _4} + {X_5} \times {\delta _5} + {X_6} \times {\delta _6} + {X_7} \times {\delta _7} + X8 \times \delta 8,$ (4)
$ {E_{{\rm{C}}{{\rm{O}}_{\rm{2}}}}}_{, {\rm{straw}}} = \sum {P \times N \times D \times B \times F \times {\delta _{{\rm{straw}}}}} ,$ (5)
$ {E_{{\rm{C}}{{\rm{H}}_{\rm{4}}}, {\rm{paddy}}}} = R \times {\delta _{{\rm{C}}{{\rm{H}}_{\rm{4}}}}},$ (6)
$ {E_{{{\rm{N}}_{\rm{2}}}{\rm{O}}, {\rm{soil}}}} = {X_1} \times {\delta _{{{\rm{N}}_{\rm{2}}}{\rm{O}}}} \times 44/28,$ (7)
$ {E_{{\rm{C}}{{\rm{O}}_{\rm{2}}}, {\rm{CS}}}} = \sum\limits_{i = 1}^k {{C_i} = \sum\limits_{i = 1}^k {\left[ {{c_i} \times {Y_i} \times \left( {1 - r} \right)/{H_i}} \right]} } {\rm{ }}。$ (8)

式(3)~(8)中,${E_{{\rm{C}}{{\rm{O}}_{\rm{2}}}, {\rm{input}}}}$为各投入要素碳排放,104 t;${E_{{\rm{C}}{{\rm{O}}_{\rm{2}}}, {\rm{straw}}}}$为秸秆焚烧碳排放,104 t;${E_{{\rm{C}}{{\rm{H}}_{\rm{4}}}, {\rm{paddy}}}}$为水稻种植CH4排放,104 t;${E_{{{\rm{N}}_{\rm{2}}}{\rm{O, soil}}}}$为农田氮肥施用N2O排放,104 t;X1~X8分别为氮肥、磷肥、钾肥、复合肥、农药、农膜、农用柴油与电力消耗;δ为排放系数(表 1);P为农作物产量;N为各作物的谷草比(表 2);DF分别为秸秆干物质比例和燃烧效率(表 3);B为秸秆田间燃烧比例,各省(区)取值:河北0.244 6、内蒙古0.114 1、辽宁0.126 6、吉林0.156 4、黑龙江0.222 2、江苏0.188 7、安徽0.341 1、江西0.226 9、山东0.331 3、河南0.215 8、湖北0.202 0、湖南0.206 5、四川0.230 4;${\delta _{{\rm{straw}}}}$为秸秆燃烧排放系数(表 4);R为水稻产量;δCH4为水稻种植的CH4排放系数(表 5);δN2O为N2O排放系数;ECO2CS为农作物碳吸收总量;Ci为农作物碳吸收量;k为农作物种类;ci为作物通过光合作用合成单位有机质所需吸收的碳,即碳吸收率;Yi为内作物的经济产量;r为作物经济产品含水量;Hi为作物经济系数。

表 1 农业投入与农田灌溉碳排放系数 Table 1 Carbon Emission coefficients of agricultural inputs and farmland irrigation

表 2 各地不同作物谷草比 Table 2 Grain-to-straw ratio for different crops at the provincial level

表 3 作物干物质比例与燃烧效率 Table 3 Dry matter proportion and burning efficiency in the crop residue

表 4 作物秸秆燃烧污染物排放系数 Table 4 Emission coefficients of pollutants emitted from crop residue burning

表 5 各地早、中、晚稻种植CH4排放系数 Table 5 Methane emission coefficients of early, in-season and late rices at the provincial level

排放系数取值大多来源于中国生命周期数据库(Chinese Life Cycle Database, CLCD)和Ecoinvent数据库。现有研究文献中采用的碳排放系数大多来源于美国橡树岭国家实验室或国外学者提供的参数, 这些系数可能不太适合中国的本土化应用。CLCD与Ecoinvent数据库则能够提供中国本土化的排放参数, 且被越来越多的学者所采用[14, 18-19]。其余各参数值参考了文献[20, 26-32]的研究成果。

作物经济系数、含水量与碳吸收率见表 6。各系数取值参考了韩召迎等和杨果等[34]的研究。

表 6 作物经济系数、含水量与碳吸收率 Table 6 Economic coefficient, water content and carbon absorption rate of main crops

种植业投入产出数据来源于《中国统计年鉴》《中国农业年鉴》《中国农村统计年鉴》《新中国五十年农业统计资料》《新中国农业60年统计资料》《新中国五十五年统计资料》, 少数部分地区的缺失数据则用当地的统计年鉴予以补充。

2 种植业碳排放的总体特征 2.1 碳排放总量、强度与密度

1991—2016年主产区种植业碳排放量由49 579.75万t增加到68 461.77万t(图 1), 增长38.08%, 年均递增1.3%。根据排放量环比增速大小, 可将排放过程大致分为3个阶段。

图 1 主产区种植业碳排放总量变化 Fig. 1 Total amount of carbon emissions in main production areas

第1阶段为1991—1999年, 这期间除了1992—1993年、1996—1997年外各时间段的环比增速均大于0, 碳排放量下降到1993年的最低点(49 460.49万t)后, 又在波动中上升到1999年的56 990.52万t, 比1991年增加14.95%, 年均递增1.76%。第2阶段为1999—2003年, 这期间的环比增速均小于0, 排放量一直下降到2003年的54 186.8万t, 比1999年下降了4.91%, 年均降低1.25%。第3阶段为2003—2016年, 这期间除了2015—2016年外的环比增速均大于0, 碳排放继续增加到68 461.77万t, 比2003年增加26.34%, 年均递增1.82%。按照排放趋势及近几年种植业的发展状况来看, 未来几年种植业碳排放量可能还会保持持续增长态势。

种植业碳排放强度在波动中持续降低(图 2), 由26 406 kg·万元-1下降到9 574.48 kg·万元-1, 降低63.74%, 年均减少3.98%。根据环比增速大小将碳排放强度变化划分为3个阶段:第1阶段为1991—1995年, 期间环比增速均小于0, 排放强度下降幅度明显, 1995年比1991年减少将近一半(42.12%), 年均递减12.78%;第2阶段为1995—2002年, 这期间除2000—2001年外的环比增速均大于0, 碳排放强度缓慢增加, 2002年比1995年增加6.77%, 年均递增0.94%;第3阶段为2002—2016年, 除2014—2015年、2015—2016年外的环比增速均小于0, 碳排放强度持续降低, 2016年比2002年下降41.33%, 年均降低3.74%。

图 2 主产区种植业碳排放强度与密度变化 Fig. 2 Carbon emission intensity and density in main production areas

主产区种植业碳排放总量在增加, 但是排放强度却表现出降低趋势, 这说明我国正在以更小的环境代价获得农业的持续增长。与碳排放强度的变化不同, 碳排放密度在波动中持续增加, 1991—2016年由4 803.17增加到6 072.13 kg·hm-2, 增加26.42%, 年均递增0.94%。1991—2016年, 农作物播种面积由10 322.3万增加到11 274.75万hm2, 增加9.23%, 年均递增0.35%, 均小于同期碳排放总量的增长率(38.08%)与年均递增率(1.3%), 可能正是这一增长率的差距导致碳排放密度增加。

2.2 碳排放构成

各排放源碳排放量占比由大到小依次为水稻种植(36.76%)、农业投入(33.42%)、秸秆燃烧(17.94%)和农田氮肥(11.88%)。农业投入要素中, 碳排放比重最大的为电力消耗(17.8%), 化肥投入碳排放比重最大的为氮肥(3.87%),最小的是钾肥(0.29%)。四大排放源排放量比重的时序变化差异较大。2007年以前水稻种植的碳排放比重最大, 但总体上呈逐年下降的趋势, 1991—2007年由44.37%下降到34.17%;农业投入碳排放比重由27.08%增加到36.26%, 且自2008年以来成为碳排放的最大贡献者; 秸秆燃烧碳排放比重由17.16%增加到19.36%, 农田氮肥施用碳排放比重则由11.4%降低到10.21%, 两者变化不大。

3 种植业碳排放的空间分布特征 3.1 碳排放总量的空间分布特征

碳排放总量的空间分布特征见图 3。1991—2016年主产区平均碳排放量为4 546.95万t, 高于均值的有江苏、湖南、安徽、湖北、山东、江西、河南、四川, 低于均值的有河北、黑龙江、吉林、辽宁、内蒙古, 排放量最大的江苏(7 475.37万t)是最低的内蒙古(1 560.94万t)的4.79倍。高于均值的8个省排放量占排放总量的80.5%, 低于均值的5个省(区)排放量占排放总量的19.5%。

图 3 主产区省级种植业年均碳排放量 Fig. 3 The amount of annual carbon emissions in main production areas at the provincial level
3.2 碳排放构成的空间分布特征

主产区农业投入、水稻种植、秸秆燃烧、农田氮肥施用碳排放平均占比分别为38.74%、29.14%、18.96%、13.16%, 农业投入与水稻种植碳排放占比最大。由图 4可见,内蒙古农业投入碳排放比例最高,为64.57%, 江西最低,为16.78%, 高于主产区平均比例(38.74%)的有内蒙古、河北、辽宁、山东、吉林、河南、黑龙江, 这些省(区)以农业投入为其最大排放源; 江西水稻种植碳排放比例最高,为70.49%, 河北最低,为1.51%, 高于平均比例(29.14%)的有江西、湖南、湖北、江苏、安徽、四川, 这些省以水稻种植为其最大排放源; 山东秸秆燃烧碳排放比例最高,为33.48%, 江西最低,为8.4%, 高于平均比例(18.96%)的有山东、黑龙江、河南、吉林、河北、安徽; 辽宁农田氮肥施用碳排放最高,为19.47%, 江西最低,为4.33%, 高于平均比例(13.16%)的有辽宁、河南、吉林、河北、内蒙古、山东。

图 4 主产区省级种植业碳排放构成 Fig. 4 The compositon of carbon emissions in main production areas at the provincial leve
3.3 碳排放强度与密度的空间分布特征

1991—2016年的平均碳排放强度为10 119.47 kg·万元-1, 高于均值的有吉林、内蒙古、黑龙江、河南、山东、安徽, 强度最高的吉林达16 223.93 kg·万元-1, 最低的辽宁只有7 053.34 kg·万元-1, 前者是后者的2.3倍。碳排放密度方面, 平均排放密度为5 654.95 kg·hm-2, 高于均值的有江苏、江西、湖南、湖北、安徽, 密度最大的江苏为9 624.85 kg·hm-2, 最小的内蒙古仅为2 443.04 kg·hm-2, 前者是后者的3.94倍。虽然吉林、内蒙古、黑龙江的平均碳排放总量相对较低, 但其排放强度最高, 农业生产的环境代价较大, 如何降低农业投入的碳排放是这几个省(区)需要重点考虑的问题。碳排放密度高于均值的5个省平均碳排放总量高于主产区平均值, 水稻种植碳排放比例也高于主产区平均值,需要重点考虑如何降低水稻种植的碳排放量。此外, 秸秆焚烧碳排放比例高于均值的省大部分位于北方, 其平均碳排放量虽然大多低于主产区平均值, 但也不容忽视, 今后需要加大力度整治田间秸秆焚烧问题。

4 种植业碳汇的总体特征与空间分布特征 4.1 种植业碳汇的总体特征 4.1.1 碳汇总量、强度与密度

1991—2016年主产区种植业碳汇量由30 509.47万增加到47 069.76万t, 增长54.28%, 年均递增1.75%。根据环比增速大小将碳汇变化大致分为3个阶段:第1阶段为1991—1996年, 环比增速除了1993—1994年外均大于0, 到1996年碳汇量增至35 691.78万t, 比1991年增加16.99%。第2阶段为1996—2003年, 虽然该时期环比增速除1996—1997年、1999—2000年外均大于0, 但由于增速小于0的这2个时期下降幅度较大, 总体上这一阶段的碳汇量持续下降到2003年(30 813.86万t), 比1996年降低13.67%。第3阶段为2003—2016年, 环比增速除了2008—2009年、2015—2016年外均大于0, 碳汇量持续增加到47 069.76万t, 增长52.76%, 年均递增3.3%。

图 5可见, 碳汇密度由1991年的2 955.69增加到2016年的4 174.79 kg·hm-2, 增长41.25%。碳汇密度增加意味着单位播种面积的CO2吸收量在增加, 农业发展对环境的污染程度正在降低。此外, 碳汇强度表现出波动下降趋势, 由16 249.24下降到6 582.78 kg·万元-1, 降低59.49%, 年均递减3.5%。农业产值增长速度高于农业碳汇增长速度, 使得单位产值碳吸收量降低。

图 5 主产区种植业碳汇强度与密度变化 Fig. 5 The intensity and density of carbon sink of main production areas
4.1.2 碳汇构成

不同作物碳汇量比较而言, 碳汇量最高的玉米是最低的薯类的33.94倍, 水稻、小麦、玉米3类粮食作物的碳汇量远大于其他作物。按照碳汇量总体增减幅度高低排序, 花生的碳汇量增幅最大(186.7%), 接下来依次为玉米(113.74%)、油菜籽(103.00%)、小麦(46.40%)、水稻(29.29%)、豆类(26.44%)、薯类(-17.52%)、棉花(-66.00%), 其中薯类和棉花的碳汇量出现了减少趋势。按照碳汇量年均变化率由高到低排序,依次为花生(4.29%)、玉米(3.09%)、油菜籽(2.90%)、水稻(1.03%)、豆类(0.94%)、小麦(0.73%)、薯类(-0.77%)、棉花(-4.20%)。

各作物碳汇量占碳汇总量的比例差异明显(图 6), 水稻碳汇占比逐年降低, 且在2002年及以前占比最大; 玉米碳汇占比逐渐上升, 且自2004年以来成为碳汇最大贡献者; 小麦碳汇占比变化比较平缓; 其余作物的碳汇占比均低于6.5%。

图 6 主产区种植业分作物碳汇构成时序变化 Fig. 6 The compositon of carbon sink of crops in main production areas
4.2 种植业碳汇的空间分布特征 4.2.1 省级种植业碳汇的总量与构成特征

1991—2016年种植业的平均碳汇量为2 894.36万t, 最高的河南达5 145.63万t, 最低的四川仅1 544.45万t, 平均碳汇量高于总体均值的有河南、山东、黑龙江、江苏、四川、河北、安徽。碳汇构成方面, 各省(区)水稻(32.36%)、小麦(20%)、玉米(32.81)的碳汇量占碳汇总量的比例较大(图 7), 3类粮食作物碳汇占比例达85.16%, 高于这一平均值的有河北(86.93%)、内蒙古(87.19%)、辽宁(93.28%)、吉林(93.84%)、江西(86.49%), 而最低的湖北也达75.45%。豆类(4.47%)与薯类(0.92%)碳汇占比相对较低, 共占5.93%, 黑龙江(17.1%)和内蒙古(8.83%)的豆类碳汇占比较高, 其余各省均低于5%。薯类碳汇占比最高的四川也仅2.91%, 其他省(区)大都低于1%。上述5类粮食作物碳汇量占总量的90.55%。

图 7 主产区省级种植业碳汇构成 Fig. 7 The compositon of carbon sink in main production areas at the provincial level

相对于粮食作物, 油菜(4.01%)、花生(2.33%)、棉花(3.11%)这3类经济作物的碳汇占比较小, 共占碳汇总量的9.45%。油菜碳汇占比最高的3个省为湖北(12.03%)、四川(8.63%)、湖南(7.95%), 花生碳汇占比最高的3个省为山东(6.49%)、河南(5.89%)、河北(3.7%), 棉花碳汇占比最高的3个省为湖北(7.22%)、河北(6.27%)、江苏(4.58%)。就各省(区)内部的碳汇占比来看, 以水稻为主(排第1)的有江西、湖南、湖北、江苏、四川、安徽, 以小麦为主的有河南、山东, 以玉米为主的有黑龙江、辽宁、吉林、内蒙古、河北。

4.2.2 省级种植业碳汇强度与密度的特征

1991—2016年种植业平均碳汇强度为10 119.47 kg·万元-1, 高于均值的有吉林、内蒙古、黑龙江、河南、山东、安徽, 最高的吉林(16 223.93 kg·万元-1)是最低的辽宁(7 053.34 kg·万元-1)的2.3倍(图 8)。碳汇密度平均值为3 541.43 kg·hm-2, 高于这一平均值的有吉林、山东、江苏、辽宁、河南, 最高的吉林(5 076.11 kg·hm-2)是最低的内蒙古(2 512.68 kg·hm-2)的2.02倍。

图 8 主产区省级种植业平均碳汇强度与密度 Fig. 8 The provincial avarage intensity and density of carbon sink of main production areas
5 种植业碳足迹(净碳排放)的总体特征与空间分布特征 5.1 种植业净碳排放的总体特征

碳排放量与碳汇量的差值即为碳足迹(净碳排放量)。1991—2016年种植业年均净碳排放量的波动变化明显, 由19 070.28万增加到21 392.01万t, 增长12.17%, 年均递增0.46%。净排放量的最大与最小值分别出现在2008年(23 929.59万t)与1993年(17 752.93万t)。根据环比增速大小可将净碳排放量变化大致分为3个阶段。第1阶段为1991—1993年, 碳排放经历了1992年的少许增加后下降到1993年的最低点, 比1991年的19 070.28万t降低6.91%。第2阶段为1993—2008年, 净碳排放量在波动中增加到最高值, 增加34.79%, 年均增长2.01%。第3阶段为2008—2016年, 净排放量在波动中持续下降到21 392.01万t, 下降10.6%, 年均减少1.39%。整个时期的种植业净碳排放量表现出随着时间推移先增加后降低的倒“U”型特征。

5.2 种植业净碳排放的空间分布特征

种植业净碳排放量的省际差异明显。1991—2016年的年均净排放量始终为正的有江苏、湖南、安徽、江西、湖北、四川、山东、河北(图 9), 前5个省的净排放量相对较高。净排放量呈正负交替变化的有河南、辽宁、内蒙古(图 10), 其中河南变化幅度最大, 最大(2003年)与最小(2006年)净排放量分别为873.1万与-212.6万t,内蒙古的变化幅度最小。净排放量始终为负的有黑龙江和吉林(图 11), 这2个省每年均表现为碳吸收状况。

图 9 主产区种植业净碳排放量为正的省份的时序变化 Fig. 9 The time series of net carbon emissions for the provinces with positive ones

图 10 主产区种植业净碳排放正负交替的省(区)的时序变化 Fig. 10 The time series of net carbon emissions for the provinces with alternate ones

图 11 主产区种植业净碳排放为负的省份的时序变化 Fig. 11 The time series of net carbon emissions for the provinces with negative ones
6 研究结论与政策启示 6.1 研究结论

该研究测算了1991—2016年粮食主产区种植业的碳足迹, 研究发现:(1)种植业年均碳排放量增加38.08%, 排放源贡献由高到低排序依次为水稻种植(36.76%)、农业投入(33.42%)、秸秆燃烧(17.94%)和农田氮肥(11.88%), 其中农业投入碳排放比例最高的是电力消耗(17.8%), 化肥投入碳排放比例最高的为氮肥(3.87%)。(2)种植业年均碳汇量增加54.28%, 水稻、小麦、玉米的碳汇量远大于其他作物, 除薯类和棉花外其他作物的年均碳汇量均逐年增加。(3)主产区种植业年均净碳排放始终为正, 1991—2016年增加12.17%, 且表现出随时间推移先增加后降低的倒“U”型特征。

6.2 政策启示

(1) 降低水稻种植的碳排放。通过政府的技术与资金支持, 进一步加大沼气工程建设力度, 推广循环经济以方便对气体的回收利用, 降低其对环境的危害。依托新的生物技术, 对传统的水稻种植技术进行升级, 尽快实现稻田的低甲烷排放。

(2) 降低农机使用的碳排放。加快节能环保农机具的研发速度, 加大对节能减排效果显著的农机具的补贴与推广力度, 尽快让农户用上新型的农机具。同时, 进一步推进规模化种植, 提高田间农机使用效率, 降低农机使用的能源消耗碳排放。

(3) 降低农业化学品使用的碳排放。尽快推广测土配方施肥与精准施肥, 减少对环境污染较大的农业化学品的使用量。实施混施与深施相结合的氮肥施用技术, 优化田间氮肥管理。合理调整农作物种植结构, 引导农户采用轮耕间作等方式种植豆科等固氮作物, 降低种植业碳排放。

(4) 禁止田间秸秆焚烧, 加快推进农村清洁能源开发, 加快秸秆等农林废弃物生物能源转化与资源循环利用, 降低废弃物在田间处理的碳排放。

(5) 区域种植业碳排放与农业生产布局密切相关, 农业碳减排要因地制宜区别对待, 可重点关注排放量多的地区在低碳减排方面的成功经验, 并将这些经验向其他地区进行推广。

需要特别指出的是, 笔者虽然尝试对相关研究的不足之处进行改进, 但仍然有许多缺陷, 如农作物品种的选择仍然不多、碳排放源的划分有限等。今后需要做进一步的改进与分析。

参考文献
[1]
IPCC."Climate Change 2013: The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change"[R].Cambridge, UK: Cambridge University Press, 2013: 1535. (0)
[2]
WIEDMANN T, MINX J.A Definition of "Carbon Footprint"//PERTSOVA C C.Ecological Economics Research Trends, Hauppauge NY, USA Nova Science Publishers, 2007: 1-11. (0)
[3]
黄祖辉, 米松华. 农业碳足迹研究:以浙江省为例[J]. 农业经济问题, 2011, 32(11): 40-47, 111. [ HUANG Zu-hui, MI Song-hua. Agricultural Sector Carbon Footprint Accounting:A Case of Zhejiang, China[J]. Issues in Agricultural Economy, 2011, 32(11): 40-47, 111.] (0)
[4]
陈中督, 吴尧, 遆晋松, 等. 湖南省双季稻生产系统碳效率[J]. 应用生态学报, 2015, 26(1): 87-92. [ CHEN Zhong-du, WU Yao, TI Jin-song, et al. Carbon Efficiency of Double-Rice Production System in Hunan Province, China[J]. Chinese Journal of Applied Ecology, 2015, 26(1): 87-92.] (0)
[5]
胡世霞, 向荣彪, 董俊, 等. 基于碳足迹视角的湖北省蔬菜生产可持续发展探讨[J]. 农业现代化研究, 2016, 37(3): 460-467. [ HU Shi-xia, XIANG Rong-biao, DONG Jun, et al. The Sustainable Development of Vegetable Production System From the Carbon Footprint Perspective in Hubei Province[J]. Research of Agricultural Modernization, 2016, 37(3): 460-467.] (0)
[6]
田云, 张俊飚, 李波. 基于投入角度的农业碳排放时空特征及因素分解研究:以湖北省为例[J]. 农业现代化研究, 2011, 32(6): 752-755. [ TIAN Yun, ZHANG Jun-biao, LI Bo. Research on Spatial-Temporal Characteristics and Factor Decomposition of Agricultural Carbon Emission Based on Input Angle:Taking Hubei Province for Example[J]. Research of Agricultural Modernization, 2011, 32(6): 752-755. DOI:10.3969/j.issn.1000-0275.2011.06.025] (0)
[7]
张婷, 蔡海生, 张学玲. 基于碳足迹的江西省农田生态系统碳源/汇时空差异[J]. 长江流域资源与环境, 2014, 23(6): 767-773. [ ZHANG Ting, CAI Hai-sheng, ZHANG Xue-ling. Spatial-Temporal Dynamics of Farmland Ecosystem Carbon Source/Sink Based on Carbon Footprint in Jiangxi Province[J]. Resources and Environment in the Yangtze Basin, 2014, 23(6): 767-773. DOI:10.11870/cjlyzyyhj201406004] (0)
[8]
王梁, 赵杰, 陈守越. 山东省农田生态系统碳源、碳汇及其碳足迹变化分析[J]. 中国农业大学学报, 2016, 21(7): 133-141. [ WANG Liang, ZHAO Jie, CHEN Shou-yue. Analysis of Ecosystem Carbon Sources/Sinks and Carbon Footprint in Farmland Ecosystem of Shandong Province[J]. Journal of China Agricultural University, 2016, 21(7): 133-141.] (0)
[9]
张鹏岩, 何坚坚, 庞博, 等. 农田生态系统碳足迹时空变化:以河南省为例[J]. 应用生态学报, 2017, 28(9): 3050-3060. [ ZHANG Peng-yan, HE Jian-jian, PANG Bo, et al. Temporal and Spatial Differences in Carbon Footprint in Farmland Ecosystem:A Case Study of Henan Province, China[J]. Chinese Journal of Applied Ecology, 2017, 28(9): 3050-3060.] (0)
[10]
黎孔清, 陈俭军, 马豆豆. 基于STIRPAT和GM(1, 1)模型的湖南省农地投入碳排放增长机理及趋势预测[J]. 长江流域资源与环境, 2018, 27(2): 345-352. [ LI Kong-qing, CHEN Jian-jun, MA Dou-dou. Growth Mechanism and Trend Forecast of Carbon Emission From Farmland Inputs in Hunan Province Based on Stirpat and GM (1, 1) Model[J]. Resources and Environment in the Yangtze Basin, 2018, 27(2): 345-352.] (0)
[11]
赵先超, 宋丽美. 湖南省农地利用碳排放与农业经济关系研究[J]. 生态与农村环境学报, 2018, 34(11): 976-981. [ ZHAO Xian-chao, SONG Li-mei. Carbon Emission From Agricultural Land Use and Its Relationship With Agricultural Economy in Hunan Province[J]. Journal of Ecology and Rural Environment, 2018, 34(11): 976-981.] (0)
[12]
罗红, 罗怀良, 李朝艳, 等. 泸州市农业碳收支时空变化及公平性评价[J]. 生态与农村环境学报, 2019, 35(4): 409-418. [ LUO Hong, LUO Huai-liang, LI Chao-yan, et al. Spatio-Temporal Change in Agricultural Carbon Production Budget and Evaluation of Agricultural Carbon Emission Equity in Luzhou City[J]. Journal of Ecology and Rural Environment, 2019, 35(4): 409-418.] (0)
[13]
李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解[J]. 中国人口·资源与环境, 2011, 21(8): 80-86. [ LI Bo, ZHANG Jun-biao, LI Hai-peng. Research on Spatial-Temporal Characteristics and Affecting Factors Decomposition of Agricultural Carbon Emission in China[J]. China Population, Resources and Environment, 2011, 21(8): 80-86. DOI:10.3969/j.issn.1002-2104.2011.08.013] (0)
[14]
王兴, 赵鑫, 王钰乔, 等. 中国水稻生产的碳足迹分析[J]. 资源科学, 2017, 39(4): 713-722. [ WANG Xing, ZHAO Xin, WANG Yu-qiao, et al. Assessment of the Carbon Footprint of Rice Production in China[J]. Resources Science, 2017, 39(4): 713-722.] (0)
[15]
韦沁, 曲建升, 白静, 等. 我国农业碳排放的影响因素和南北区域差异分析[J]. 生态与农村环境学报, 2018, 34(4): 318-325. [ WEI Qin, QU Jian-sheng, BAI Jing, et al. Influencing Factors of Agricultural Carbon Emission and Regional Differences Between South and North in China[J]. Journal of Ecology and Rural Environment, 2018, 34(4): 318-325.] (0)
[16]
李立, 周灿, 李二玲, 等. 基于投入视角的黄淮海平原农业碳排放与经济发展脱钩研究[J]. 生态与农村环境学报, 2013, 29(5): 551-558. [ LI Li, ZHOU Can, LI Er-ling, et al. Decoupling Analysis of Agricultural Carbon Emission and Economic Development From an Input Perspective:A Case Study of Huang-Huai-Hai Plain[J]. Journal of Ecology and Rural Environment, 2013, 29(5): 551-558. DOI:10.3969/j.issn.1673-4831.2013.05.002] (0)
[17]
陈勇, 李首成, 税伟, 等. 基于EKC模型的西南地区农业生态系统碳足迹研究[J]. 农业技术经济, 2013(2): 120-128. (0)
[18]
王占彪, 王猛, 陈阜. 华北平原作物生产碳足迹分析[J]. 中国农业科学, 2015, 48(1): 83-92. [ WANG Zhan-biao, WANG Meng, CHEN Fu. Carbon Footprint Analysis of Crop Production in North China Plain[J]. Scientia Agricultura Sinica, 2015, 48(1): 83-92.] (0)
[19]
黄晓敏, 陈长青, 陈铭洲, 等. 2004—2013年东北三省主要粮食作物生产碳足迹[J]. 应用生态学报, 2016, 27(10): 3307-3315. [ HUANG Xiao-min, CHEN Chang-qing, CHEN Ming-zhou, et al. Carbon Footprints of Major Staple Grain Crops Production in Three Provinces of Northeast China During 2004-2013[J]. Chinese Journal of Applied Ecology, 2016, 27(10): 3307-3315. DOI:10.13287/j.1001-9332.201610.036] (0)
[20]
闵继胜, 胡浩. 中国农业生产温室气体排放量的测算[J]. 中国人口·资源与环境, 2012, 22(7): 21-27. [ MIN Ji-sheng, HU Hao. Calculation of Greenhouse Gases Emission From Agricultural Production in China[J]. China Population, Resources and Environment, 2012, 22(7): 21-27. DOI:10.3969/j.issn.1002-2104.2012.07.004] (0)
[21]
田云, 张俊飚. 中国农业生产净碳效应分异研究[J]. 自然资源学报, 2013, 28(8): 1298-1309. [ TIAN Yun, ZHANG Jun-biao. Regional Differentiation Research on Net Carbon Effect of Agricultural Production in China[J]. Journal of Natural Resources, 2013, 28(8): 1298-1309.] (0)
[22]
MATTHEWS H S, HENDRICKSON C T, WEBER C L. The Importance of Carbon Footprint Estimation Boundaries[J]. Environmental Science & Technology, 2008, 42(16): 5839-5842. (0)
[23]
LENZEN M. Errors in Conventional and Input-Output:Based Life:Cycle Inventories[J]. Journal of Industrial Ecology, 2000, 4(4): 127-148. DOI:10.1162/10881980052541981 (0)
[24]
PANDEY D, AGRAWAL M.Carbon Footprint Estimation in the Agriculture Sector[M]//Assessment of Carbon Footprint in Different Industrial Sectors, Volume 1.Singapore: Springer Singapore, 2014: 25-47.DOI: 10.1007/978-981-4560-41-2-2. (0)
[25]
CHENG K, PAN G X, SMITH P, et al. Carbon Footprint of China′s Crop Production:An Estimation Using Agro-Statistics Data Over 1993-2007[J]. Agriculture, Ecosystems & Environment, 2011, 142(3/4): 231-237. DOI:10.1016/j.agee.2011.05.012 (0)
[26]
IPCC.2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme.Tokyo, Japan: IGES, 2006. (0)
[27]
LI J, BO Y, XIE S D. Estimating Emissions From Crop Residue Open Burning in China Based on Statistics and MODIS Fire Products[J]. Journal of Environmental Sciences, 2016, 44: 158-170. DOI:10.1016/j.jes.2015.08.024 (0)
[28]
何敏, 王幸锐, 韩丽, 等. 四川省秸秆露天焚烧污染物排放清单及时空分布特征[J]. 环境科学, 2015, 36(4): 1208-1216. [ HE Min, WANG Xing-rui, HAN Li, et al. Emission Inventory of Crop Residues Field Burning and Its Temporal and Spatial Distribution in Sichuan Province[J]. Environmental Science, 2015, 36(4): 1208-1216.] (0)
[29]
王晓玉, 薛帅, 谢光辉. 大田作物秸秆量评估中秸秆系数取值研究[J]. 中国农业大学学报, 2012, 17(1): 1-8. [ WANG Xiao-yu, XUE Shuai, XIE Guang-hui. Value-Taking for Residue Factor as a Parameter to Assess the Field Residue of Field Crops[J]. Journal of China Agricultural University, 2012, 17(1): 1-8.] (0)
[30]
王明星, 李晶, 郑循华. 稻田甲烷排放及产生、转化、输送机理[J]. 大气科学, 1998, 22(4): 600-612. [ WANG Ming-xing, LI Jing, ZHENG Xun-hua. Methane Emission and Mechanisms of Methane Production, Oxidation, Transportation in the Rice Fields[J]. Scientia Atmospherica Sinica, 1998, 22(4): 600-612. DOI:10.3878/j.issn.1006-9895.1998.04.20] (0)
[31]
蔡祖聪, 谢德体, 徐华, 等. 冬灌田影响水稻生长期甲烷排放量的因素分析[J]. 应用生态学报, 2003, 14(5): 705-709. [ CAI Zu-cong, XIE De-ti, XU Hua, et al. Factors Influencing CH4 Emissions From a Permanently Flooded Rice Field During Rice Growing Period[J]. Chinese Journal of Applied Ecology, 2003, 14(5): 705-709. DOI:10.3321/j.issn:1001-9332.2003.05.012] (0)
[32]
江长胜, 王跃思, 郑循华, 等. 川中丘陵区冬灌田甲烷和氧化亚氮排放研究[J]. 应用生态学报, 2005, 16(3): 539-544. [ JIANG Chang-sheng, WANG Yue-si, ZHENG Xun-hua, et al. CH4 and N2O Emission From a Winter-Time Flooded Paddy Field in a Hilly Area of Southwest China[J]. Chinese Journal of Applied Ecology, 2005, 16(3): 539-544. DOI:10.3321/j.issn:1001-9332.2005.03.029] (0)
[33]
韩召迎, 孟亚利, 徐娇, 等. 区域农田生态系统碳足迹时空差异分析:以江苏省为案例[J]. 农业环境科学学报, 2012, 31(5): 1034-1041. [ HAN Zhao-ying, MENG Ya-li, XU Jiao, et al. Temporal and Spatial Difference in Carbon Footprint of Regional Farmland Ecosystem:Taking Jiangsu Province as a Case[J]. Journal of Agro-Environment Science, 2012, 31(5): 1034-1041.] (0)
[34]
杨果, 陈瑶. 中国农业源碳汇估算及其与农业经济发展的耦合分析[J]. 中国人口·资源与环境, 2016, 26(12): 171-176. [ YANG Guo, CHEN Yao. China′s Agriculture Carbon Sink Estimation and Its Coupling Analysis With Agricultural Economy Development[J]. China Population, Resources and Environment, 2016, 26(12): 171-176.] (0)