文章快速检索     高级检索
  生态与农村环境学报  2019, Vol. 35 Issue (10): 1225-1231   DOI: 10.19741/j.issn.1673-4831.2019.0147
0
氧化石墨烯复合膜在水处理中的应用研究进展与展望
张志伟 1,2, 徐斌 1, 张毅敏 1,2, 巴翠翠 1,2, 汤志凯 1,2, 顾诗云 1,2    
1. 生态环境部南京环境科学研究所, 江苏 南京 210042;
2. 常州大学环境与安全工程学院, 江苏 常州 213164
摘要:氧化石墨烯(GO)复合膜基于良好的亲水性、丰富的官能团、较大的比表面积及化学稳定性等优异性能在膜分离领域备受关注。该文综述了GO复合膜的制备方法,包括真空过滤法、旋涂法、层层自组装法、掺杂法和共混法等,介绍了其在微污染水体和工业废水深度处理领域的研究进展,探讨了GO复合膜对污染物的分离机理,并对其在水处理领域的应用前景和今后的研究方向进行了展望。
关键词复合膜    氧化石墨烯    水处理    机理    
Research Progress and Prospect of Graphene Oxide Modified Composite Membrane in Water Treatment
ZHANG Zhi-wei 1,2, XU Bin 1, ZHANG Yi-min 1,2, BA Cui-cui 1,2, TANG Zhi-kai 1,2, GU Shi-yun 1,2    
1. Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China;
2. School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
Abstract: Graphene oxide (GO) composite membranes have attracted much attention in the field of membrane separation due to their excellent hydrophilicity, abundant functional groups, large specific surface area and chemical stability. In this paper, the preparation methods of GO composite membranes were reviewed, including vacuum filtration, spin coating, layer-by-layer self-assembly, doping method and blending. Meanwhile, the research progress of GO composite membranes in the field of water treatment (micro-polluted water treatment and advanced treatment of industrial wastewater) was introduced. In addition, the separation mechanism of pollutants by GO composite membranes was discussed. Finally, the application prospects and future research directions of GO composite membranes in the field of water treatment were prospected.
Key words: composite membrane    graphene oxide    water treatment    mechanism    

膜分离技术利用膜对混合流体中各物质组分的选择透过性实现对各物质的组分分离、纯化和浓缩。由于其分离效率高、节能环保、操作简单等优点, 已成为解决全球能源、环境、水资源等重大问题的共性支撑技术之一[1]。单一的分离膜因其固有性质(亲水性一般等)在分离过程中会造成膜污染, 导致膜分离性能下降、能耗增加、使用寿命短等情况。因此, 开发性能优异的复合膜是目前膜分离领域的研究重点。复合膜由力学支撑的基膜和表皮层构成, 常见的基膜材料有聚砜、聚醚砜、醋酸纤维素、聚偏氟乙烯(PVDF)等。针对表皮层进行材料和结构的优化能够提高复合膜的性能, 常见的表皮层材料有碳纳米管、二氧化硅(SiO2)等, 具有金属离子截留率高、抗菌性强及易对基膜进行功能化改性等特点, 但也普遍存在分散性及稳定性差等不足。氧化石墨烯(GO)作为一种具有较大比表面积的二维纳米碳材料, 富含羟基、羧基等含氧官能团, 具有亲水性强、易分散、抗污染能力强及易功能化设计等优点[2-5], 是理想的表皮层材料。对GO进行功能化改性设计, 改变层间距离、孔径及官能团, 从而赋予GO复合膜独特的化学稳定性、截留降解性能等[6-11], 使其可应用于不同的分离体系, 满足不同水质要求[12-17]。该研究综述了GO复合膜的制备方法, 介绍了其在水处理领域的研究进展, 探讨了相关机理, 并展望了存在的问题和应用前景。

1 GO复合膜的制备方法

目前GO复合膜的制备方法主要包括真空抽滤法、旋涂法、层层自组装法、掺杂法、共混法等, 每种制备方法都有其自身的优缺点。

1.1 真空抽滤法

真空抽滤法是将GO分散液真空抽滤覆盖基膜的方法, 具有操作简单、成膜平整、基膜材料选择广泛、制膜条件易调控、污染物截留率高及水通量性能好等优点。GO片层间距离和片层间的褶皱可作为离子和水分子的移动通道[18]。真空抽滤法通过改变抽滤压力、盐浓度、pH值等因素调控GO层间距。此外, 不同的基膜材质对复合膜截留效果有一定的影响。HUANG等[19]在陶瓷纤维上真空抽滤制备GO复合膜, 25 ℃条件下膜对有机物(碳酸二甲酯)/水混合物表现出优异的分离性能, 截留率达95.2%。YOU等[20]使用PVDF基膜真空抽滤制备GO复合膜, 膜通量保持65 L·m-2·h-1·MPa-1时对天然有机物达到100 %的截留效果。真空抽滤法制备的复合膜上GO表皮层与基膜结合不稳定, 易从基膜表面脱落。

1.2 旋涂法

旋涂法是指在加热的情况下将GO分散液滴涂在基底上, 调节基底的温度和转速使溶液快速蒸发, 形成均匀、平整的GO薄膜。蒸发过程有利于去除GO片层间的水分子, 缩小层间距离, 促使片层间形成较强的毛细管作用力, 有助于形成紧密的膜结构[21], 复合膜因较小的层间距对污染物截留效果较好。SHAO等[22]在聚丙烯腈基底表面制得GO/聚吡咯(PPy)复合膜, GO/PPy提高了复合膜的有机污染物截留能力, 对有机溶剂甲醇、乙醇等截留率大于99%, 但水通量相对一般。旋涂法调控因素(基底、旋转时间、速度、温度等)较多, 对基底蒸发温度及旋转速度等有较高要求, 制备前需对GO溶液进行脱泡以免膜出现空穴, 但通过对GO溶液进行改性即可制得改性膜, 功能化设计较为方便。

1.3 层层自组装法

层层自组装法是利用带电基板在相反电荷的溶液中交替沉积, 聚电解质自组装成多层膜的方法。利用GO表面的大量含氧官能团及其电负性性质, 可以与聚合物、带电纳米粒子等进行自组装, 根据其应用类型可调节沉积条件、沉积层数等参数。层层自组装法制备的复合膜成膜稳定, 适用于制备精细复合膜, 具有较好的截留效果和水通量, 能够表现出优于商业纳滤和反渗透膜的性能[23]。HU等[24]利用1, 3, 5-苯基三氯甲烷在聚磺酸载体上交联GO纳米片逐层沉积形成GO复合膜, 交联使GO片层稳定堆叠, 该膜通量是目前商用纳滤膜膜通量的4倍, 对罗丹明B的截留率达到93%。层层自组装法对交联剂、电解质等的选择具有较多要求, 还需要精确调控通电强度、时间和电解液顺序沉积, 操作复杂, 能量需求较大, 但层层自组装法制备的GO复合膜不易出现破损和褶皱, GO片层间结合紧密且层间距离可控。

1.4 掺杂法

掺杂法利用基膜分别在水相和油相中发生聚合反应, 在膜表面形成致密层以制备复合膜。掺杂法制备的GO复合膜厚度较薄、表面光滑、亲水性和抗污染性能也有所增强[25]。调控GO层间距可以使GO复合膜在保持较高的水通量性能时有较好的盐离子截留效果。YIN等[26]采用掺杂法制备了GO复合膜, 相较于聚酰胺基膜, GO复合膜水通量增加70%, 盐离子截留率保持在95%以上。GO有助于聚酰胺基膜亲水、抗污染、耐氯性能的提升, 增强其作为反渗透膜的应用性能[27]。掺杂法通过调节水油相的浓度及反应时间, 可以控制复合膜的截留性能和水通量, 但仍有许多因素影响界面聚合反应, 包括水油相的种类和浓度、基膜的类型、热处理的时间及温度等, 需要调控因素较多。

1.5 共混法

共混法是将GO与基膜材料粉末混合搅拌脱泡后制成铸膜液, 使用刮膜机在适当的温度、湿度下以一定的速度在玻璃板上刮膜而成。相较于其他方法,共混法可以得到更加均匀的膜结构[28], 膜性能优异。WANG等[29]采用共混法制备GO/PVDF复合膜, 该膜表面光滑度、纯水通量和牛血清蛋白截留率相较于PVDF基膜有明显的提升。ZHANG等[30]在此基础上制备碳纳米管@GO/PVDF复合膜, 发现该膜纯水通量相较于PVDF基膜增加240%, 相较于碳纳米管/PVDF复合膜增加70%, 且具有很好的抗污染能力、分散性和稳定性。LI等[31]采用共混法制备添加无机化合物SiO2的SiO2@GO/PVDF纳米复合膜, 相较于SiO2/PVDF复合膜具有更优的分散性和稳定性, 其对牛血清蛋白截留率达到91.7%, 纯水通量达679.1 L·m-2·h-1·MPa-1, 远远高于SiO2/PVDF膜[32]。除了无机化合物, 共混法还可以制备添加金属氧化物颗粒的ZnO@GO/PVDF复合膜, 该膜亲水性与抗污染能力较PVDF基膜均有较大提升, 并可以有效降低牛血清蛋白对膜造成的污染[33]。共混法改性简单、综合性能较好, 是一种易于工业化生产的方式, 但需要调节各材料比例, 否则易出现团聚现象(表 1)。

表 1 不同制备方法膜性能、制备工艺及经济成本[19, 22, 24, 26, 33] Table 1 Membrane properties, preparation processes and economic costs of different preparation methods
2 GO复合膜在水处理领域的研究进展 2.1 微污染水体处理

GO复合膜可通过调控GO层间距离, 截留去除微污染水体中溶解性有机物[34]、细菌和金属离子等。金属颗粒(如ZnO、Ag2CO3等)嵌入GO复合膜是改变GO层间距的有效手段, 改性后的复合膜对湖泊溶解性有机物截留率可达60%, 处理后的水体COD和溶解性有机物均可达到自然水体一级标准[35]。此外, 将纳米碳材料掺杂到GO复合膜中可以增加膜的亲水性并形成排斥性的边界屏障, 增强复合膜的抗污染能力[36], 可用于截留湖泊中的常规典型污染物。如HO等[37]真空抽滤制备碳纳米管@GO/PVDF复合膜, 相较于PVDF基膜, 该复合膜对湖泊水体中磷、COD、浊度和色度等的截留率分别提升了6.55%、75.5%、81.94%和86.3%。将蛋白质复合碳纳米管三维GO制备改性复合膜, 可以显著提高对致病性大肠杆菌的灭菌能力, 对As3+、As5+和Pb2+截留率均在95%以上[38]。但GO复合膜对分子量小于800的小分子物质截留效果不佳[39], 需要在调控层间距基础之上进一步改性从而赋予复合膜独特的性质, 例如将光敏性材料如二氧化钛(TiO2)等与GO复合, GO可提高TiO2在紫外光范围内的催化性能, 该膜紫外光条件下对微污染水体中抗生素磺胺嘧啶的去除率达98.3%, 远高于黑暗条件下31.8%的截留率[40]。VALLEJO等[41]发现GO同样提高了TiO2在可见光范围内的催化性能, 且掺杂无机元素如氮、硫等可进一步提升光催化能力[42]

2.2 工业废水深度处理

利用GO复合膜水通量和脱盐性能优良、抗污染能力强等方面的优势, 可以促进工业废水的深度处理和回用, 增加水循环次数, 有助于缓解水资源紧张问题。在造纸、印染等行业废水深度处理方面, GO复合膜可以兼顾水通量与染料分子、金属盐离子截留率的要求。如对造纸芬顿氧化工艺出水中Mg2+、Ca2+离子的去除率可达70%以上, 水通量为3.10 kg·m-2·h-1 [43], 对染料分子截留率约98%, 同时纯水通量极佳[44]。HOSSEINI等[45]制备的氟化石墨烯基纳米复合膜, 通过孔边缘的氟官能化, 在很大程度上阻止了Cl-的通过, 使膜可达到不低于94.31%的脱盐率。BANDARA等[46]着力于去除重金属离子, 优化GO、壳聚糖、戊二醇、聚乙烯亚胺用量制备复合膜, 可去除废水中90%的Cr6+。为了控制GO复合膜的成本, 扩大其在工业废水深度处理领域的应用规模, HAN等[47]在超薄微孔膜上沉积GO制备复合膜, 纯水通量为21.8 L·m-2·h-1·MPa-1, 用该膜处理染料废水, 对有机染料的截留率高达99%, 盐离子的截留率在20%~60%之间。由于该膜的超薄性质, 34 mg GO材料可制备1 m2纳滤复合膜, 高性能、低成本使得其在净水领域具有广阔的应用前景。大量应用研究和理论研究预测表明, GO复合膜在高离子截留率、高水通量等方面的综合性能均超过目前的商业纳滤膜[48], 具有广泛应用于工业废水深度处理的潜力。

3 GO复合膜对水体中污染物的去除机理 3.1 孔径截留

GO复合膜的层间距离和膜表面缺陷、孔隙构成了水中分子、离子移动通道, 由于GO片层间毛细管作用力产生极大的压强,使离子的渗透速率大大增加, 水合直径小于GO纳米通道的离子可以比简单扩散更快的速度在GO膜中渗透[49], 因此通过调控分子、离子移动通道高度可以达到截留水合体积较大的分子、离子的目的(图 1)。CHEN等[51]制备出由一种阳离子控制层间距离的GO改性氧化铝复合膜, 可以有效、有选择性地截留水合直径较大的阳离子。XI等[52]通过控制GO纳米片的褶皱和氧化程度, 构建出有效通道高度为0.8 nm的纳米通道, 精确筛分水合直径为0.6~0.7 nm的单价和水合直径为0.8~0.9 nm的多价金属离子, 体现出单/多价金属离子选择差异性。

图 1 GO复合膜孔径筛分和层间距离筛分示意[50] Fig. 1 The schematic diagram of filtration through pores on the graphene membrane and through layer spacing of graphene film
3.2 官能团作用

官能团作用机理即通过对GO复合膜进行官能团功能化改性, 赋予其独特的性能, 达到对目标污染物截留、吸附降解的效果。GO复合膜官能团与污染物之间发生π-π相互作用、静电作用、氢键作用等从而起到吸附截留作用。SUN等[53]研究发现, 根据Donnan效应, 利用GO的负电性和静电作用可达到截留带电离子的目的。此外, 若污染物水合体积较小且与膜官能团无相互作用, 则可以对GO进行功能化改性, 引入针对性的特异性官能团或光敏性物质, 实现吸附、截留及光催化去除污染物的目的。ZHANG等[54]利用共价键将聚乙烯亚胺与GO接枝, 以聚醚砜为基膜制备了GO纳米复合膜。复合膜在π-π键和静电作用下对芳香烃具有很强的吸附能力(图 2), 且随着GO添加量的增加, 吸附能力增强。AYYARU等[56]制备了磺基化GO改性PVDF复合膜, 发现添加的磺酸基团(—SO3H)与GO中的—COOH/—OH基团相比具有更强的氢键作用, 对牛血清蛋白有极强的吸附截留作用。

图 2 孔雀石绿、乙基紫与复合膜的吸附机理[55] Fig. 2 Adsorption mechanism of malachite green and ethyl violet with composite membranes
3.3 光催化作用

光敏性物质在光照条件下产生光生超氧化物自由基, 可以与污染物发生氧化还原反应[57], 利用光敏性物质改性GO复合膜可以提高复合膜对水中污染物的去除效果(图 3)。ZHANG等[58]制备了氮化碳-TiO2@GO/PVDF光催化复合膜, 在光照条件下TiO2和氮化碳产生电子-空穴对, 两者的不同能级有助于减少电子-空穴对的复合并延长电荷寿命, 增强光催化降解性能, 对氨、抗生素、双酚A去除率达到50%、80%和82%。ALMEIDA等[59]制备TiO2@GO/PVDF复合膜, 该复合膜可达到近100%的亚甲基蓝去除率, 光照产生的空穴(h+)与水分子反应形成羟基自由基,转移到GO表面的电子(e-),与氧气反应生成超氧化物自由基, 两者可将亚甲基蓝氧化降解。YU等[60]研究了掺杂卤代氧化铋的多巴胺@GO改性醋酸纤维素膜制备复合膜, 可见光照射100 min内其对亚甲基蓝的去除率达98%, 并提出了相似的去除机理。

图 3 氮化碳可见光降解罗丹明B和二氧化钛可见光降解亚甲基蓝机理 Fig. 3 Mechanism of visible degradation of carbon nitride rhodamine B and methylene blue in titanium dioxide
4 结论与展望

该研究综述了GO复合膜的制备方法, 从制备工艺、膜稳定性、纯水通量、截留性能及经济成本等方面分析了各制备方法的优缺点, 认为共混法综合性能最佳, 最适用于工业化应用。国内外研究表明GO复合膜对水体中溶解性有机物、细菌、重金属离子、盐离子等有良好的截留去除效果, 并具有较佳的抗污染能力和水通量, 在水处理领域具有广阔的研究前景。此外, GO复合膜对水体中污染物分离机理包括截留筛分、官能团和光催化作用, 针对大分子污染物, 调控GO复合膜孔径及层间距离即可达到较好的截留率; 针对小分子污染物, 只调控膜孔径和层间距离并无很好的截留效果, 此时应该考虑对复合膜进行改性, 通过官能团吸附、光催化降解等达到截留去除效果。

GO独特的片状结构、良好的亲水性、丰富的官能团、较大的比表面积及化学稳定性等特性在对复合膜性能改进方面发挥了重要作用, 但目前仍存在问题:例如如何精确控制GO复合膜层间距和膜孔径; 如何设计筛选合适的官能团制备高通量、高选择性、强抗污染性及可重复利用的高性能复合膜; 如何进一步降低GO复合膜的生产成本、扩大应用范围,以及GO复合膜对环境的影响和安全评价等。

参考文献
[1]
PABBY A K, RIZVI S S H, REQUENA A M S. Handbook of Membrane Separations[M]. New York, USA: CRC Press, 2008: 1184. DOI:10.1201/9781420009484 (0)
[2]
SUN M, LI J H. Graphene Oxide Membranes:Functional Structures, Preparation and Environmental Applications[J]. Nano Today, 2018, 20: 121-137. DOI:10.1016/j.nantod.2018.04.007 (0)
[3]
HUMMERS W S JR, OFFEMAN R E. Preparation of Graphitic Oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339. DOI:10.1021/ja01539a017 (0)
[4]
LAI L F, CHEN L W, ZHAN D, et al. One-Step Synthesis of NH2-Graphene From in Situ Graphene-Oxide Reduction and Its Improved Electrochemical Properties[J]. Carbon, 2011, 49(10): 3250-3257. DOI:10.1016/j.carbon.2011.03.051 (0)
[5]
MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved Synthesis of Graphene Oxide[J]. ACS Nano, 2010, 4(8): 4806-4814. DOI:10.1021/nn1006368 (0)
[6]
SHI J L, WU W F, XIA Y, et al. Confined Interfacial Polymerization of Polyamide-Graphene Oxide Composite Membranes for Water Desalination[J]. Desalination, 2018, 441: 77-86. DOI:10.1016/j.desal.2018.04.030 (0)
[7]
ZHU J Y, TIAN M, HOU J W, et al. Surface Zwitterionic Functionalized Graphene Oxide for a Novel Loose Nanofiltration Membrane[J]. Journal of Materials Chemistry A, 2016, 4(5): 1980-1990. DOI:10.1039/C5TA08024J (0)
[8]
YU L, ZHANG Y T, ZHANG B, et al. Preparation and Characterization of HPEI-GO/PES Ultrafiltration Membrane With Antifouling and Antibacterial Properties[J]. Journal of Membrane Science, 2013, 447: 452-462. DOI:10.1016/j.memsci.2013.07.042 (0)
[9]
HOSSEINI M, AZAMAT J F, ERFAN-NIYA H. Improving the Performance of Water Desalination Through Ultra-Permeable Functionalized Nanoporous Graphene Oxide Membrane[J]. Applied Surface Science, 2018, 427: 1000-1008. DOI:10.1016/j.apsusc.2017.09.071 (0)
[10]
LIU P Y, YAN T T, SHI L Y, et al. Graphene-Based Materials for Capacitive Deionization[J]. Journal of Materials Chemistry A, 2017, 5(27): 13907-13943. DOI:10.1039/C7TA02653F (0)
[11]
DUAN H Y, YAN T T, CHEN G R, et al. A Facile Strategy for the Fast Construction of Porous Graphene Frameworks and Their Enhanced Electrosorption Performance[J]. Chemical Communications, 2017, 53(54): 7465-7468. DOI:10.1039/C7CC03424E (0)
[12]
SURWADE S P, SMIRNOV S N, VLASSIOUK I V, et al. Water Desalination Using Nanoporous Single-Layer Graphene[J]. Nature Nanotechnology, 2015, 10(5): 459-464. DOI:10.1038/nnano.2015.37 (0)
[13]
JAIN T, RASERA B C, GUERRERO R J S, et al. Heterogeneous Sub-Continuum Ionic Transport in Statistically Isolated Graphene Nanopores[J]. Nature Nanotechnology, 2015, 10(12): 1053-1057. DOI:10.1038/nnano.2015.222 (0)
[14]
COHEN-TANUGI D, GROSSMAN J C. Mechanical Strength of Nanoporous Graphene as a Desalination Membrane[J]. Nano Letters, 2014, 14(11): 6171-6178. DOI:10.1021/nl502399y (0)
[15]
LIN L C, GROSSMAN J C. Atomistic Understandings of Reduced Graphene Oxide as an Ultrathin-Film Nanoporous Membrane for Separations[J]. Nature Communications, 2015, 6: 8335. DOI:10.1038/ncomms9335 (0)
[16]
KIDAMBI P R, BOUTILIER M S H, WANG L D, et al. Selective Nanoscale Mass Transport Across Atomically Thin Single Crystalline Graphene Membranes[J]. Advanced Materials, 2017, 29(19): 1605896. DOI:10.1002/adma.201605896 (0)
[17]
WANG L D, BOUTILIER M S H, KIDAMBI P R, et al. Fundamental Transport Mechanisms, Fabrication and Potential Applications of Nanoporous Atomically Thin Membranes[J]. Nature Nanotechnology, 2017, 12(6): 509-522. DOI:10.1038/nnano.2017.72 (0)
[18]
HUANG H B, MAO Y Y, YING Y L, et al. Salt Concentration, pH and Pressure Controlled Separation of Small Molecules Through Lamellar Graphene Oxide Membranes[J]. Chemical Communications, 2013, 49(53): 5963-5965. DOI:10.1039/c3cc41953c (0)
[19]
HUANG K, LIU G P, LOU Y Y, et al. A Graphene Oxide Membrane With Highly Selective Molecular Separation of Aqueous Organic Solution[J]. Angewandte Chemie, 2014, 126(27): 7049-7052. DOI:10.1002/ange.201401061 (0)
[20]
YOU Y, JIN X H, WEN X Y, et al. Application of Graphene Oxide Membranes for Removal of Natural Organic Matter From Water[J]. Carbon, 2018, 129: 415-419. DOI:10.1016/j.carbon.2017.12.032 (0)
[21]
DU Y C, HUANG L J, WANG Y X, et al. Recent Developments in Graphene-Based Polymer Composite Membranes:Preparation, Mass Transfer Mechanism, and Applications[J]. Journal of Applied Polymer Science, 2019, 136(28): 47761. DOI:10.1002/app.47761 (0)
[22]
SHAO L, CHENG X Q, WANG Z X, et al. Tuning the Performance of Polypyrrole-Based Solvent-Resistant Composite Nanofiltration Membranes by Optimizing Polymerization Conditions and Incorporating Graphene-Oxide[J]. Journal of Membrane Science, 2014, 452: 82-89. DOI:10.1016/j.memsci.2013.10.021 (0)
[23]
SANYAL O, LEE I. Recent Progress in the Applications of Layer-by-Layer Assembly to the Preparation of Nanostructured Ion-Rejecting Water Purification Membranes[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(3): 2178-2189. DOI:10.1166/jnn.2014.8541 (0)
[24]
HU M, MI B X. Enabling Graphene Oxide Nanosheets as Water Separation Membranes[J]. Environmental Science & Technology, 2013, 47(8): 3715-3723. DOI:10.1021/es400571g (0)
[25]
CHAE H R, LEE J, LEE C H, et al. Graphene Oxide-Embedded Thin-Film Composite Reverse Osmosis Membrane With High Flux, Anti-Biofouling, and Chlorine Resistance[J]. Journal of Membrane Science, 2015, 483: 128-135. DOI:10.1016/j.memsci.2015.02.045 (0)
[26]
YIN J, ZHU G C, DENG B L. Graphene Oxide (GO) Enhanced Polyamide (PA) Thin-Film Nanocomposite (TFN) Membrane for Water Purification[J]. Desalination, 2016, 379: 93-101. DOI:10.1016/j.desal.2015.11.001 (0)
[27]
LIU Q, XU G R. Graphene Oxide (GO) as Functional Material in Tailoring Polyamide Thin Film Composite (PA-TFC) Reverse Osmosis (RO) Membranes[J]. Desalination, 2016, 394: 162-175. DOI:10.1016/j.desal.2016.05.017 (0)
[28]
ZHANG X, WANG Y, LIU Y F, et al. Preparation, Performances of PVDF/ZnO Hybrid Membranes and Their Applications in the Removal of Copper Ions[J]. Applied Surface Science, 2014, 316(15): 333-340. (0)
[29]
WANG Z H, YU H R, XIA J F, et al. Novel GO-Blended PVDF Ultrafiltration Membranes[J]. Desalination, 2012, 299: 50-54. DOI:10.1016/j.desal.2012.05.015 (0)
[30]
ZHANG J G, XU Z, MAI W, et al. Improved Hydrophilicity, Permeability, Antifouling and Mechanical Performance of PVDF Composite Ultrafiltration Membranes Tailored by Oxidized Low-Dimensional Carbon Nanomaterials[J]. Journal of Materials Chemistry A, 2013, 1(9): 3101-3111. DOI:10.1039/c2ta01415g (0)
[31]
LI Z K, LANG W Z, MIAO W, et al. Preparation and Properties of PVDF/SiO2@GO Nanohybrid Membranes via Thermally Induced Phase Separation Method[J]. Journal of Membrane Science, 2016, 511: 151-161. DOI:10.1016/j.memsci.2016.03.048 (0)
[32]
丁元利, 洪志发, 刘相革, 等. 骨架修饰有机-无机杂化二氧化硅膜的研究进展[J]. 材料导报, 2014, 28(增刊1): 262-264, 267. [ DING Yuan-li, HONG Zhi-fa, LIU Xiang-ge, et al. A Review on the Backbone Modified Organic-Inorganic Hybrid Silica Membranes[J]. Materials Review, 2014, 28(Suppl.1): 262-264, 267.] (0)
[33]
马志刚, 马聪, 王亮, 等. GO-ZnO共混改性PVDF膜的制备及抗污染性能[J]. 中国给水排水, 2018, 34(1): 42-47. [ MA Zhi-gang, MA Cong, WANG Liang, et al. Preparation and Antifouling Properties of GO/ZnO-Blended PVDF Membrane[J]. China Water & Wastewater, 2018, 34(1): 42-47.] (0)
[34]
倪木子, 夏圣骥, 袁方竹, 等. 新型氧化石墨烯膜的制备及去除天然有机物研究[J]. 水处理技术, 2016, 42(8): 40-47. [ NI Mu-zi, XIA Sheng-ji, YUAN Fang-zhu, et al. Graphene Oxide Membranes Assembled for Removing Natural Organic Matter[J]. Technology of Water Treatment, 2016, 42(8): 40-47.] (0)
[35]
冯雪婷, 杨盛, 文晨, 等. Ag2CO3@PVDF/氧化石墨烯超滤膜及其分离性能[J]. 化工学报, 2017, 68(5): 2169-2176. [ FENG Xue-ting, YANG Sheng, WEN Chen, et al. Ag2CO3@PVDF/GO Ultrafiltration Membrane for Water Purification[J]. CIESC Journal, 2017, 68(5): 2169-2176.] (0)
[36]
ZHU Y, CHEN P P, NIE W Y, et al. Greatly Improved Oil-in-Water Emulsion Separation Properties of Graphene Oxide Membrane Upon Compositing With Halloysite Nanotubes[J]. Water, Air, & Soil Pollution, 2018, 229(3): 94. DOI:10.1007/s11270-018-3757-6 (0)
[37]
HO K C, TEOW Y H, ANG W L, et al. Novel GO/OMWCNTs Mixed-Matrix Membrane With Enhanced Antifouling Property for Palm Oil Mill Effluent Treatment[J]. Separation and Purification Technology, 2017, 177: 337-349. DOI:10.1016/j.seppur.2017.01.014 (0)
[38]
VIRAKA N B P, KANCHANAPALLY R, PEDRAZA F, et al. Bio-Conjugated CNT-Bridged 3D Porous Graphene Oxide Membrane for Highly Efficient Disinfection of Pathogenic Bacteria and Removal of Toxic Metals From Water[J]. ACS Applied Materials & Interfaces, 2015, 7(34): 19210-19218. (0)
[39]
CELIK E, PARK H, CHOI H, et al. Carbon Nanotube Blended Polyethersulfone Membranes for Fouling Control in Water Treatment[J]. Water Research, 2011, 45(1): 274-282. DOI:10.1016/j.watres.2010.07.060 (0)
[40]
刘立言, 裴杨, 龙明策, 等. 表面改性GOT/PVDF超滤膜的制备及对水中微污染物的去除[J]. 环境工程学报, 2017, 11(10): 5381-5386. [ LIU Li-yan, PEI Yang, LONG Ming-ce, et al. Fabrication of Surface Modified GOT/PVDF Ultrafiltration Membrane and Its Removal of Micro-Pollutants From Aqueous Solution[J]. Chinese Journal of Environmental Engineering, 2017, 11(10): 5381-5386.] (0)
[41]
VALLEJO W, RUEDA A, DÍAZ-URIBE C, et al. Photocatalytic Activity of Graphene Oxide-TiO2 Thin Films Sensitized by Natural Dyes Extracted From Bactris guineensis[J]. Royal Society Open Science, 2019, 6(3): 181824. DOI:10.1098/rsos.181824 (0)
[42]
LI T T, GAO Y, ZHOU J W, et al. A Membrane Modified With Nitrogen-Doped TiO2/Graphene Oxide for Improved Photocatalytic Performance[J]. Applied Sciences, 2019, 9(5): 855. DOI:10.3390/app9050855 (0)
[43]
赵金琴, 焦东, 武书彬, 等. 氧化石墨烯膜应用于造纸废水深度处理的研究[J]. 造纸科学与技术, 2017, 36(3): 79-85. [ ZHAO Jin-qin, JIAO Dong, WU Shu-bin, et al. Study on the Advanced Treatment of Papermaking Wastewater by Graphene Oxide Ceramics Composite Membrane[J]. Paper Science & Technology, 2017, 36(3): 79-85.] (0)
[44]
GAO S J, QIN H L, LIU P P, et al. SWCNT-Intercalated GO Ultrathin Films for Ultrafast Separation of Molecules[J]. Journal of Materials Chemistry A, 2015, 3(12): 6649-6654. DOI:10.1039/C5TA00366K (0)
[45]
HOSSEINI M, AZAMAT J, ERFAN-NIYA H. Water Desalination Through Fluorine-Functionalized Nanoporous Graphene Oxide Membranes[J]. Materials Chemistry and Physics, 2019, 223: 277-286. DOI:10.1016/j.matchemphys.2018.10.063 (0)
[46]
BANDARA P C, NADRES E T, RODRIGUES D F. Use of Response Surface Methodology to Develop and Optimize the Composition of a Chitosan-Polyethyleneimine-Graphene Oxide Nanocomposite Membrane Coating to More Effectively Remove Cr(Ⅵ) and Cu(Ⅱ) From Water[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17784-17795. DOI:10.1021/acsami.9b03601 (0)
[47]
HAN Y, XU Z, GAO C. Ultrathin Graphene Nanofiltration Membrane for Water Purification[J]. Advanced Functional Materials, 2013, 23(29): 3693-3700. DOI:10.1002/adfm.201202601 (0)
[48]
COHEN-TANUGI D, GROSSMAN J C. Water Desalination Across Nanoporous Graphene[J]. Nano Letters, 2012, 12(7): 3602-3608. DOI:10.1021/nl3012853 (0)
[49]
MI B. Graphene Oxide Membranes for Ionic and Molecular Sieving[J]. Science, 2014, 343(6172): 740-742. DOI:10.1126/science.1250247 (0)
[50]
ZHAO G X, LI J X, REN X M, et al. Few-Layered Graphene Oxide Nanosheets as Superior Sorbents or Bents for Heavy Metal Ion Pollution Management[J]. Environmental Science & Technology, 2011, 45(24): 10454-10462. (0)
[51]
CHEN L, SHI G S, SHEN J, et al. Ion Sieving in Graphene Oxide Membranes via Cationic Control of Interlayer Spacing[J]. Nature, 2017, 550(7676): 380-383. DOI:10.1038/nature24044 (0)
[52]
XI Y H, LIU Z, JI J Y, et al. Graphene-Based Membranes With Uniform 2D Nanochannels for Precise Sieving of Mono-/Multi-Valent Metal Ions[J]. Journal of Membrane Science, 2018, 550: 208-218. DOI:10.1016/j.memsci.2017.12.057 (0)
[53]
SUN P Z, ZHU M, WANG K L, et al. Selective Ion Penetration of Graphene Oxide Membranes[J]. ACS Nano, 2013, 7(1): 428-437. DOI:10.1021/nn304471w (0)
[54]
ZHANG L N, CHEN B L, GHAFFAR A, et al. Nanocomposite Membrane With Polyethylenimine-Grafted Graphene Oxide as a Novel Additive to Enhance Pollutant Filtration Performance[J]. Environmental Science & Technology, 2018, 52(10): 5920-5930. (0)
[55]
NAEEM H, AJMAL M, MUNTHA S, et al. Synthesis and Characterization of Graphene Oxide Sheets Integrated With Gold Nanoparticles and Their Applications to Adsorptive Removal and Catalytic Reduction of Water Contaminants[J]. RSC Advances, 2018, 8(7): 3599-3610. DOI:10.1039/C7RA12030C (0)
[56]
AYYARU S, AHN Y H. Application of Sulfonic Acid Group Functionalized Graphene Oxide to Improve Hydrophilicity, Permeability, and Antifouling of PVDF Nanocomposite Ultrafiltration Membranes[J]. Journal of Membrane Science, 2017, 525(1): 210-219. (0)
[57]
WEI Y B, ZHU Y X, JIANG Y J. Photocatalytic Self-Cleaning Carbon Nitride Nanotube Intercalated Reduced Graphene Oxide Membranes for Enhanced Water Purification[J]. Chemical Engineering Journal, 2019, 356: 915-925. DOI:10.1016/j.cej.2018.09.108 (0)
[58]
ZHANG Q, CHEN S, FAN X F, et al. A Multifunctional Graphene-Based Nanofiltration Membrane Under Photo-Assistance for Enhanced Water Treatment Based on Layer-by-Layer Sieving[J]. Applied Catalysis B:Environmental, 2018, 224: 204-213. DOI:10.1016/j.apcatb.2017.10.016 (0)
[59]
ALMEIDA N A, MARTINS P M, TEIXEIRA S, et al. TiO2/Graphene Oxide Immobilized in P(VDF-TrFE) Electrospun Membranes With Enhanced Visible-Light-Induced Photocatalytic Performance[J]. Journal of Materials Science, 2016, 51(14): 6974-6986. DOI:10.1007/s10853-016-9986-4 (0)
[60]
YU Z X, MIN X, LI F, et al. A Mussel-Inspired Method to Fabricate a Novel Reduced Graphene Oxide/Bi12O17Cl2 Composites Membrane for Catalytic Degradation and Oil/Water Separation[J]. Polymers for Advanced Technologies, 2019, 30(1): 101-109. DOI:10.1002/pat.4448 (0)