文章快速检索     高级检索
  生态与农村环境学报  2018, Vol. 34 Issue (9): 788-796   DOI: 10.11934/j.issn.1673-4831.2018.09.004
0
稻田氮、磷损失与过程监测方法研究进展
胡冰涛 1,2, 张龙江 1, 杨士红 2, 陈玉东 1, 周慧平 1    
1. 环境保护部南京环境科学研究所, 江苏 南京 210042;
2. 河海大学水利水电学院, 江苏 南京 210098
摘要:水稻是我国主要的粮食作物之一。水稻生产过程中土壤和肥料中的部分氮磷元素以溶质或颗粒形态通过淋溶、径流迁移至周围水体,造成地下水污染和水体富营养化。稻田土壤中氨挥发产生的氨气和反硝化反应产生的氧化亚氮气体进入大气,加剧了温室效应。笔者围绕稻田氮磷的气体挥发、径流和淋溶3个流失途径介绍了国内外常用的监测方法,并进一步讨论了针对径流和淋溶这2种流失途径的监测指标、监测频率和监测深度等问题,总结了2种流失途径的主要氮磷流失形态,根据产流特征和施肥时间确定监测时间节点,综合考虑植物吸收和地下水深度确定淋溶监测深度,以期为稻田氮磷流失监测提供相关技术支持和科学依据。
关键词稻田    氮磷    监测方法    
Research Advances on Process and Monitoring Methods of Nitrogen and Phosphorus Loss in Paddy Fields
HU Bing-tao 1,2, ZHANG Long-jiang 1, YANG Shi-hong 2, CHEN Yu-dong 1, ZHOU Hui-ping 1    
1. Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China;
2. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
Abstract: Rice is one of the major cereal crops in China. During the rice production process, part of the nitrogen and phosphorus in the soil and fertilizer migrates to the surrounding water body through leaching and runoff in the form of solutes or particles, causing groundwater pollution and eutrophication of water bodies. Ammonia produced by ammonium volatilization in paddy soil and nitric oxide produced by denitrification reactions enter the atmosphere, aggravating the greenhouse effect. The commonly used monitoring methods of gas volatilization, runoff, and leaching in paddy fields from domestic and international studies are introduced, and the monitoring indicators, monitoring frequency, and monitoring depth in the pathways are further discussed; the main nitrogen and phosphorus forms in runoff loss and leaching loss are summarized; the monitoring frequency is determined by the characteristics of runoff and the fertilization; plant absorption and depth of groundwater should be considered to determine the depth of leaching monitoring. This study provides a reference for further monitoring of nitrogen and phosphorus losses in paddy fields.
Key words: paddy field    nitrogen and phosphorus    monitoring method    

农田面源污染是目前发生面最广、影响最大的面源污染, 是面源污染的主要形式[1]。农田面源污染是指在农业生产活动中氮和磷等营养物质、农药、重金属以及其他有机和无机污染物质、土壤颗粒等沉积物以降雨为载体并在降雨的冲击和淋溶作用下, 通过农田地表径流和地下淋溶过程对大气、土壤和水体等环境形成的污染[2]。从本质上讲, 农田面源污染物是来自于农田土壤中的农业化学物质, 因此, 它的产生、迁移与转化过程实质上是污染物从土壤圈向其他圈层, 特别是水圈扩散的过程[3]

氮、磷是植物生长发育需要量较大的营养元素, 过去几十年里施用化肥一直是提高世界粮食产量的重要措施。我国是世界化肥第一消费大国, 化肥消费量达到5 562万t以上, 约占世界化肥总消费量的34%, 我国稻田单季氮肥用量平均为180 kg·hm-2, 比世界平均施氮水平高75%[4-5]。施入农田的氮肥、磷肥不能完全被作物吸收利用, 大部分氮肥、磷肥通过地表径流进入河流、湖泊或通过非饱和区渗透进入地下水, 造成水体富营养化和地下水污染[6-8]。我国水稻生产中氮肥平均利用率为30%~35%, 高产地区更低, 磷肥利用率低至15%~25%[9-10]。美国60%左右的地表水环境问题是由农业生产引起的, 农业面源污染被美国环境保护总署列为河流和湖泊的第一污染源。欧洲国家农业生产活动中排放的氮磷量占地表氮磷总负荷的24%~71%[11]。日本地下水源调查结果显示约90%的地下水源中ρ(硝酸盐)超过3 mg·L-1[12]。我国北方京、津、唐等地69个观测点数据显示50%以上硝酸盐超标, 最高可达67.7 mg·L-1[13]

长期以来, 针对稻田氮磷流失的环境效应问题国内外已开展大量监测工作, 根据稻田氮磷流失途径可将监测划分为稻田氮素气态损失、氮磷径流流失和氮磷淋溶流失3类。笔者就稻田氮磷流失研究中采用的监测方法和监测内容进行阐述。

1 稻田氮素气态损失监测

氮素的挥发损失以氨氮为主, 氮肥表施时氨挥发损失占总施氮量的10%~60%[14]。稻田氨挥发的监测方法可分为直接法和间接法。直接法中较为常用的方法主要有密闭生长箱法、微气象法和风洞法。间接法是根据稻田生态系统氮素平衡, 由施肥量、植物吸收量、土壤残留量和淋失量来估算氨挥发量, 该方法不考虑反硝化作用, 误差较大[15]

密闭生长箱法是将被测植物放置在密闭装置中, 用酸或碱性物质置换气体的方法采集植物释放的氨, 然后定量测定。该装置结构简单, 能够直接捕获土壤排放的挥发氨, 但密闭条件下氨挥发过程不同于自然通风条件下, 并且植物蒸腾的水汽在生长室内壁被吸附, 氨在置换出生长室前可能被这些水汽吸收, 从而影响测定结果[16]。有学者针对密闭箱法的通风问题做出改进。王朝辉等[17]设计了原位测定田间土壤氨挥发的一种通气装置, 该方法中氨捕获器由1个聚氯乙烯硬质塑料管和2片浸过磷酸甘油溶液的海绵构成。土壤表面经海绵与外界环境的空气流通, 海绵上层吸收空气中的氨, 下层吸收装置内土壤挥发氨, 测定结果的准确度和精确度较高, 氨回收率达99.51%, 变异系数仅为0.77%。

微气象法主要发展为涡度相关法、梯度扩散法和质量平衡法3种方法。涡度相关法是根据垂直风速脉动和被测气体浓度脉动来获得气体通量的方法, 该方法要求被测气体的水平浓度梯度可忽略不计以及观测期间大气条件稳定。但是涡度相关法要求使用快速响应的气体检测器, 测量频率要求达5~10 Hz, 且由于氨的易吸附性和易溶性, 目前还没有可靠的应用于涡度相关法的高频率测定设备。梯度扩散法首先假设在风速和NH3浓度均一的大面积农田上空存在一个NH3浓度梯度不随时间变化的剖面, 通过测定NH3的揣流扩散系数(K)和垂直方向上NH3浓度梯度来计算NH3的垂直通量, 所以该方法需要面积巨大的均匀下垫面。质量平衡法要求必须在几个高度处同时测定风速和大气中氨浓度, 设置的最后高度应当在试区半径长度的1/10处, 一般至少要测5个高度层面, 试验区外作物的覆盖应与试验区内相同[15]

风洞法在欧洲国家应用较多, 由采样箱、采样系统和控制系统3个部分构成[18], 采用流过风洞的风速平均值代表实际田间风速[19], 从而较准确地估计氨挥发量, 几种常见风洞法的回收率: Lockyer风洞回收率为77%~87%, Moal风洞回收率为70%~80%, Braschkat风洞回收率为97%~103%[20-22]。然而, 风洞法无法解决不能模拟静风和降水条件的问题, 当风速低于0.3 m·s-1时误差较大, 虽然风洞内外风速能保持高度一致, 但是由于风洞边界的影响, 会高估氨挥发速率[23-24]。稻田土壤中的硝化和反硝化作用会产生N2O和N2气体, 其中, N2O约占稻田N2O和N2排放量的2/3, N2约占1/3。然而, 目前水稻田的硝化和反硝化作用尚缺乏合适的田间原位监测方法[25]

2 氮磷径流流失监测 2.1 监测方法

降雨事件和分蘖末期的排水晒田是稻田发生径流、产生氮磷径流流失的直接驱动力。目前, 稻田氮磷径流流失按照监测尺度分为田间小区监测、农田多点位监测和平方公里网格监测[26-27]

田间小区监测是构建互相隔离、独立封闭灌溉和排水系统的种植小区, 同时监测降雨产生的径流的水质和水量, 从而确定氮磷的单位负荷量, 通过单位面积氮磷负荷量乘以田间小区面积来估算氮磷流失负荷量[28-30]。利用人工控制的田间小区开展监测是定量研究农田养分流失的常用方法[31-35]。BARTON等[31]在云南省设置不同坡度田间小区研究传统耕作、免耕、秸秆覆盖、聚乙烯地膜覆盖和间作的水土保持效果。WON等[36]为研究秸秆覆盖和土壤改良剂对韩国坡地土壤径流和非点源污染影响开展了多种处理的砂壤土场的田间小区实验。

农田多点位监测指在农田及周边沟渠、河道等关键点位进行水质和水量监测, 以研究农田所在的小面积区域氮磷输出特征[37-38]。例如, 高超等[33]在太湖何家浜流域2次典型降雨事件中以单块封闭水稻田直入河点和汇流沟渠入河点为采样点, 探究非点源污染物在降雨过程中初期冲刷效应。SHARPLEY等[39]监测阿肯色州Discovery农场的作物种植区水道水量和水质情况, 以评估保护性耕作对农场环境的影响。

平方公里网格监测指在平方公里网格尺度上, 考虑降雨、施肥等因素, 选取沟渠、河道系统完整的田块作为氮磷污染监测点, 研究不同利用类型农田氮磷迁移过程。KUPKANCHANAKUL等[40]在印度邦帕通盆地采集河流、水产养殖场和稻田水样和底泥样本并结合数学模型分析主要河流污染物来源。陈成龙等[41]选取三峡库区涪陵段封闭性较好的王家沟小流域, 采集各点位地表径流样品, 探究稻田空间格局对氮磷流失的影响。

2.2 监测指标

土壤养分进入地表径流的主要内在驱动力大致可以归纳为对流扩散作用、雨滴击溅搅动和水流冲刷作用等。土壤中氮磷以2种形态进入径流:一种是溶解态, 养分溶解于土壤溶液中, 通过水分交换进入地表径流; 另一种是吸附态, 部分养分被吸附在土壤颗粒表面, 通过解吸或伴随侵蚀泥沙进入地表径流[42]

部分学者认为氮以溶解态形式流失到径流中的养分占比较高[43-47]。例如, 邱卫国等[46]在上海郊区通过测坑和水稻田大田实验发现氮素径流损失以溶解态为主。叶玉适等[48]通过水肥耦合对杭州稻田氮磷迁移影响实验研究发现, 溶解性氮(DN)是天然降雨径流流失氮素的主要形态, 约占TN的70%~92%;NO3--N约占40%~80%, NH4+-N浓度较低, 仅占3.4%~27%。然而也有学者认为稻田径流中氮素流失形态以颗粒态氮(PN)为主[49-51]。陈颖等[52]对自然降雨条件下海河流域水稻田地表径流的研究发现, PN是农田径流损失的主要形式, 其流失量与径流量呈明显正相关。于兴修等[51]研究西苕溪流域不同土地利用类型土壤氮径流流失过程发现, TN和PN浓度随降雨过程逐渐降低, 稻田径流排放中PN占TN的比例稳定在66.9%~83.6%。

降雨或灌溉会冲击土壤表层, 使表层土壤富集的磷颗粒大量析出而随径流流失, 颗粒态磷(PP)是土壤磷径流损失的主要形态。另外, 施磷肥会将磷素带入土壤, 施肥后因短期内降雨而流失的主要磷形态是可溶性磷(DP)[53]。施入稻田的磷会立即水解, 释放出大量无机磷酸盐, 使得施磷后短期内以溶解态为主的磷素流失潜能不断增加[54]。根据研究统计, PP和DP在径流流失磷素中的比例分别可达59.35%~80.04%和19.96%~40.65%[26, 52, 55-56]。同一次径流中, 早期径流液中磷以PP为主, 而后期DP比例加大[56]

2.3 监测频率

降雨是稻田氮磷流失的重要驱动力[57]。焦少俊等[58]的研究表明, 1/3~1/2的稻田氮素径流损失由施肥后的随机性大雨导致。一次降雨内, 由于初期冲刷效应, 往往在径流起涨期间径流水质较差, 各污染物浓度较高; 在径流回落阶段, 径流水中各污染物浓度往往有所下降[59-60]。径流产生初期, 采取径流水样的时间间隔较短, 频次较多。管毓堂等[60]在太湖流域水稻田降雨径流实验中水田径流产生时采集水样1次, 此后, 在5、10、20、30、60和120 min时采样并同步记录流量; 120 min后每2 h采样1次。高超等[33]在太湖流域水稻田排污实验中设置采样时间为农田径流形成时, 前期采样时间间隔为10 min, 中后期随时间推移采样频率逐渐降低, 采样时间间隔逐步延伸至60 min以上。径流水样采集频率也可按水样体积计。张继宗等[61]于太湖流域稻田施基肥后第3和第16天进行模拟降雨实验, 在径流产生初期每个样品体积为10 L, 在单位时间产生的径流量稳定后, 每个样品体积为50 L。降雨结束后径流采样频率可降低, 一般隔天采集1次[62]。梁新强等[45]在太湖流域稻田灌溉、降雨后第1、3和5天采集稻田径流水样, 发现灌溉复水后短期内径流水中NO3--N浓度出现高峰期, 甚至高于穗肥施用后的最高值, 发生暴雨事件后稻田排水监测需增加取样频率[63]

3 氮磷淋溶流失监测 3.1 监测方法

淋溶是由于降水的天然下渗或人工灌溉使表层土壤中一些矿物盐类或有机物质溶解并转移到下层土壤中的过程[64]。目前, 监测农田氮磷淋溶污染的方法主要有土壤溶液提取法、渗漏池实验法和同位素示踪法。

土壤溶液提取法指根据负压原理, 用某一类定点溶液提取器收集田间某一深度土壤淋溶液, 测定土壤溶液实际养分浓度[65]。目前, 运用最多的主要有排水采集器法[66-68]和吸力杯测渗计法[69]。排水采集器法可以直接测定淋失的养分浓度和体积, 但其安装复杂,维护困难, 不仅会对原状土壤产生较大扰动, 而且可能产生边际优先流, 影响淋溶水的形成。吸力杯测渗计法安装操作方便, 对原状土壤的破坏性较小, 但是只能测定淋溶液养分浓度[70-71], 淋溶液体积需要根据气象数据利用水分平衡原理[72]或者根据当地淋溶水淋溶速率[73]进行估算。

渗漏池实验法用于监测超过作物根系利用深度的土壤剖面中的氮磷进入地下水体的情况。实际操作中首先在选定地点挖出一定深度的方形坑, 开挖时尽量分层保存挖出的土壤, 用水泥等建筑材料建立渗漏池, 并留出不同深度的采样孔, 分层回填土壤, 待土壤性质稳定后开展渗漏监测。渗漏池监测可以研究不同深度渗漏流失情况, 但是由于只能监测点位, 难以反映区域氮磷流失负荷。

同位素示踪法具有准确、安全和不干扰自然的特性, 被广泛运用于监测氮磷的吸收、转化和分配状况[74-76]。张惠[75]采用15N示踪法研究黄河上游灌区稻田系统氮肥去向和稻田氮素平衡, 发现当季残留在土壤中的大部分肥料氮富集在深度为0~30 cm的耕层。谢学俭等[77]运用32P标记方法研究稻季施肥后磷的垂直迁移, 结果表明磷在施入水田后大部分滞留在0~5 cm表层土中, 32P浓度随土层深度增加而降低。由于Br-化学性质稳定, 土壤中微生物不参与Br-转化, 应用Br-作为标记物更能反映土壤氮磷淋溶流失潜力[74]

3.2 监测指标

土壤颗粒和土壤胶体带负电, 所以对NH4+-N有强吸附作用, 这使得大部分可交换态NH4+-N得以保存在土壤中。但在特定条件下, 存在NH4+-N通过质流或水分下渗在土壤中迁移的情况; 土壤对NO3--N的吸附甚微, 故NO3--N易遭受雨水或灌溉水淋洗而进入地下水或通过径流、侵蚀等汇入地表水中[78]

氮素淋溶形态以NO3--N为主, NO2--N和NH4+-N占小部分[78]。NH4+-N分布于土壤上层和中层, NO3--N多分布于土壤下层[79]。叶玉适等[80]在杭州余杭区取30 cm深度稻田淋溶水样分析发现, 该深度水样中各形态氮以NH4+-N为主, 占TN的70.1%, NO3--N占13.0%, NO2--N占1.3%。李娟[26]对临安市水稻种植区不同深度淋溶液的分析发现, 60 cm深度处NH4+-N和NO3--N流失量分别占TN的13.41%~24.34%和34.11%~75.84%。谢育平[81]通过在南通市开展的稻田养分迁移实验发现, NO3--N为该地90 cm深度淋溶液中氮素主要形态。

土壤对磷素的固定能力较强, 磷在土壤剖面中向下迁移很少, 一般移动速度每年不超过0.1 mm; 土壤施磷100 a后磷素仍集中在40 mm土层内[82]。除了一些有机土以外, 即使在过量施肥的土壤或地下水位较高的砂质土壤中, 多数情况下淋溶水中磷浓度仍较低[83]。但是也有学者认为当土壤中磷素达到一定水平时, 土壤中较强的磷吸附位就会被占据, 从而导致土壤对磷素的吸持能力接近饱和, 此时磷素流失量就会随土壤磷素的增加而急剧增加[55, 84]

土壤磷素淋溶形态分为PP和DP。PP包括含磷矿物、含磷有机质和被吸持在土壤颗粒上的磷, 在一定条件下被溶解和吸持[85]。DP包括钼酸盐反应磷(MRP)和可溶性有机磷(DOP)。按照淋溶时间顺序, 最先淋溶出土壤的磷是附着在细小土壤颗粒上的PP, 其次是DOP。随着水分的增加以及淋溶的延续, 更多的MRP被溶解而随水流出土壤[86]。所以PP、DOP和MRP均可能是淋溶磷的主要组成形态[54, 87-88]。LÜ等[89]在洛桑实验站抽取施加过磷酸钙的12块稻田小区65 cm深度淋溶水, 发现淋溶水中PP占TP的33.8%~87.3%, 是淋溶水中磷的最主要组成形态。王小治等[88]利用太湖地区长江岸边砂质渗育性水稻土进行实验, 发现各施肥处理90 cm处土壤溶液中的磷均以DOP为主, 占DP的56%~100%。项大力等[42]利用淋溶池设施研究3个灌溉水平对土壤磷素淋失的影响, 结果表明土壤中磷淋失形态均以DP为主, MRP约占DP的50%。

3.3 监测频率

水稻生产活动中, 施肥后一段时期内大量氮磷通过淋溶进入环境。现有研究[42, 48, 54, 89]表明, 施肥后在没有发生降雨的情况下, 稻田淋溶水中TN、NH4+-N和NO3--N浓度均在10 d内达到高峰, 然后逐渐下降, 淋溶TP和DP浓度变化趋势也相同, 均在施肥后7 d达到最高值, 然后逐渐下降。淋溶水中NO3--N浓度高峰可能出现在施肥后稍迟时间, 且浓度变化情况复杂, 受硝化条件、水分条件等多种因素影响。施肥后一定时期内淋溶水中各形态氮磷浓度变化幅度较其他时期大。为了解淋溶水中氮磷变化规律, 该时期内监测采样频率一般设置为隔天监测, 监测时间跨度一般为7~10 d[90-92]。然而, 有研究者发现海相沉积物发育土30、60和90 cm深度淋溶液中NO3--N浓度均在施肥后10~15 d前后升高到峰值, 然后逐渐下降[93]。杨梢娜[94]在杭嘉湖平原稻田监测到施基肥14 d后淋溶水中NO3--N浓度达到峰值。以上2项研究中NO3--N峰值出现时间滞后, 需要延长施肥后氮淋溶流失监测时间。

3.4 监测深度

关于农田氮磷的淋溶损失, 不同学者的研究结果相差较大。目前, 氮磷淋失研究中淋溶量的准确获取仍是一个难点[95], 这也是由不同的气候条件、土壤特性、作物类型、耕作制度、灌溉方式和施肥管理[86, 92, 96-98], 以及淋溶水采样深度[99]这些关键因素造成的。李卫华等[13]在福建闽侯县将淋溶水收集装置设置于稻田田间正下方40 cm处, 是考虑到该深度以下的氮磷不会被作物吸收。王德建等[100]考虑到太湖地区地下水水位在80 cm左右,故取太湖地区80 cm深度土层淋溶液作为稻田氮素淋洗到地下水中的量。鉴于磷素的移动性小, 谢育平[81]认为30 cm深处土壤淋溶水中DP浓度变化情况可以代表进入环境的磷素变化情况。为研究进入环境的氮磷淋溶量, 设置取样深度时需要考虑植物吸收、地下水深度和氮磷移动特性等因素。

4 展望

水稻是我国最主要的粮食作物, 播种面积约占粮食种植总面积的30%, 稻田面源污染具有分散面广、随机性强、不易监测和难以量化等特征, 这些因素使得稻田氮磷流失监测工作呈现难度大且紧迫性强的特点。现有的稻田氮磷污染监测方法多服务于科学研究, 在实际监测应用中需要根据当地作物、土壤、降水和耕作制度等情况对监测指标、监测频率等监测内容进行调整。另外, 将GIS和RS技术运用于稻田氮磷流失监测工作能够实现点位监测与区域监测的结合, 大幅提高区域氮磷流失负荷计算精度, 这是今后的研究方向。

参考文献
[1]
ABBOTT L K, MANNING D A C.Soil Health and Related Ecosystem Services in Organic Agriculture[J/OL].Sustainable Agriculture Research, 2015, 4(3)[2017-07-01].http://www.ccsenet.org/journal/index.php/sar/article/view/50131.doi:10.5539/sar.v4n3p116. (0)
[2]
薛旭初. 宁波市农业面源污染治理的对策[J]. 现代农业科技, 2006(4): 98-99. DOI:10.3969/j.issn.1007-5739.2006.04.076 (0)
[3]
刘平乐. 农业面源污染及其防治[J]. 甘肃科技, 2011, 27(3): 147-150. DOI:10.3969/j.issn.1000-0952.2011.03.055 (0)
[4]
马群, 李国业, 顾海永, 等. 我国水稻氮肥利用现状及对策[J]. 广东农业科学, 2010, 37(11): 126-129. DOI:10.3969/j.issn.1004-874X.2010.11.040 (0)
[5]
朱兆良, 金继运. 保障我国粮食安全的肥料问题[J]. 植物营养与肥料学报, 2013, 19(2): 259-273. [ ZHU Zhao-liang, JIN Ji-yun. Fertilizer Use and Food Security in China[J]. Plant Nutrition and Fertilizer Science, 2013, 19(2): 259-273.] (0)
[6]
SVANBÄCK A, ULÉN B, ETANA A. Mitigation of Phosphorus Leaching Losses via Subsurface Drains From a Cracking Marine Clay Soil[J]. Agriculture, Ecosystems & Environment, 2014, 184: 124-134. (0)
[7]
YANG S H, PENG S Z, XU J Z, et al. Effects of Water Saving Irrigation and Controlled Release Nitrogen Fertilizer Managements on Nitrogen Losses From Paddy Fields[J]. Paddy and Water Environment, 2015, 13(1): 71-80. DOI:10.1007/s10333-013-0408-9 (0)
[8]
ZAMAN M, BLENNERHASSETT J D. Effects of the Different Rates of Urease and Nitrification Inhibitors on Gaseous Emissions of Ammonia and Nitrous Oxide, Nitrate Leaching and Pasture Production From Urine Patches in an Intensive Grazed Pasture System[J]. Agriculture, Ecosystems & Environment, 2010, 136(3/4): 236-246. (0)
[9]
LIU X J, AI Y W, ZHANG F S, et al. Crop Production, Nitrogen Recovery and Water Use Efficiency in Rice-Wheat Rotation as Affected by Non-Flooded Mulching Cultivation(NFMC)[J]. Nutrient Cycling in Agroecosystems, 2005, 71(3): 289-299. DOI:10.1007/s10705-004-6801-4 (0)
[10]
朱兆良. 稻田土壤中氮素的转化与氮肥的合理施用[J]. 化学通报, 1994(9): 15-17, 22. (0)
[11]
VIGHI M, CHIAUDANI G. Eutrophication in Europe:The Role of Agricultural Activities[J]. Reviews in Environmental Toxicology, 1987, 3: 213-257. (0)
[12]
BABIKER I S, MOHAMED M A A, TERAO H, et al. Assessment of Groundwater Contamination by Nitrate Leaching From Intensive Vegetable Cultivation Using Geographical Information System[J]. Environment International, 2004, 29(8): 1009-1017. DOI:10.1016/S0160-4120(03)00095-3 (0)
[13]
李卫华.不同施肥及水分管理方式下稻田土壤氮磷养分流失特征的研究[D].福州: 福建农林大学, 2011.
LI Wei-hua.Research on Nitrogen, Phosphorus Loss Characteristics Under Different Fertilization and Water Management[D].Fuzhou: Fujian Agriculture and Forestry University, 2011. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2045787 (0)
[14]
FILLERY I R P, VLEK P L G. Reappraisal of the Significance of Ammonia Volatilization as an N Loss Mechanism in Flooded Rice Fields[J]. Nutrient Cycling in Agroecosystems, 1986, 9(1): 79-98. (0)
[15]
宋勇生, 范晓晖. 稻田氨挥发研究进展[J]. 生态环境, 2003, 12(2): 240-244. [ SONG Yong-sheng, FAN Xiao-hui. Summary of Research on Ammonia Volatilization in Paddy Soil[J]. Ecology and Environment, 2003, 12(2): 240-244. DOI:10.3969/j.issn.1674-5906.2003.02.029] (0)
[16]
吴小庆, 徐阳春, 沈其荣. 植物叶片氨挥发研究进展[J]. 生态与农村环境学报, 2006, 22(2): 80-84. [ WU Xiao-qing, XU Yang-chun, SHEN Qi-rong. Progress in Research on Ammonia Volatilization From Plant Leaves[J]. Journal of Ecology and Rural Environment, 2006, 22(2): 80-84. DOI:10.3969/j.issn.1673-4831.2006.02.017] (0)
[17]
王朝辉, 刘学军, 巨晓棠, 等. 田间土壤氨挥发的原位测定:通气法[J]. 植物营养与肥料学报, 2002, 8(2): 205-209. [ WANG Zhao-hui, LIU Xue-jun, JU Xiao-tang, et al. Field in Situ Determination of Ammonia Volatilization From Soil:Venting Method[J]. Plant Nutrition and Fertilizer Science, 2002, 8(2): 205-209. DOI:10.3321/j.issn:1008-505X.2002.02.014] (0)
[18]
BRASCHKAT J, MANNHEIM T, HORLACHER D, et al. Measurement of Ammonia Emissions After Liquid Manure Application:Ⅰ.Construction of a Wind Tunnel System for Measurements Under Field Conditions[J]. Journal of Plant Nutrition and Soil Science, 1993, 156(5): 393-396. (0)
[19]
BOUWMEESTER R J B, VLEK P L G. Wind-Tunnel Simulation and Assessment of Ammonia Volatilization From Ponded Water[J]. Agronomy Journal, 1981, 73(3): 546-552. DOI:10.2134/agronj1981.00021962007300030033x (0)
[20]
WEERDEN T J V D, MOAL J F, MARTINEZ J, et al. Evaluation of the Wind-Tunnel Method for Measurement of Ammonia Volatilization From Land[J]. Journal of Agricultural Engineering Research, 1996, 64(1): 11-13. DOI:10.1006/jaer.1996.0041 (0)
[21]
LOUBET B, CELLIER P, FLURA D, et al. An Evaluation of the Wind-Tunnel Technique for Estimating Ammonia Volatilization From Land:Part 1.Analysis and Improvement of Accuracy[J]. Journal of Agricultural Engineering Research, 1999, 72(1): 71-81. (0)
[22]
MANNHEIM T, BRASCHKAT J, MARSCHNER H. Measurement of Ammonia Emission After Liquid Manure Application:Ⅱ.Comparison of the Wind Tunnel and the IHF Method Under Field Conditions[J]. Journal of Plant Nutrition and Soil Science, 1995, 158(3): 215-219. (0)
[23]
黄彬香, 苏芳, 丁新泉, 等. 田间土壤氨挥发的原位测定:风洞法[J]. 土壤, 2006, 38(6): 712-716. [ HUANG Bin-xiang, SU Fang, DING Xin-quan, et al. German Wind-Tunnel System for Measuring Ammonia Volatilization From Agricultural Soil[J]. Soils, 2006, 38(6): 712-716. DOI:10.3321/j.issn:0253-9829.2006.06.009] (0)
[24]
LOUBET B, CELLIER P, GÉNERMONT S, et al. An Evaluation of the Wind-Tunnel Technique for Estimating Ammonia Volatilization From Land:Part 2.Influence of the Tunnel on Transfer Processes[J]. Journal of Agricultural Engineering Research, 1999, 72(1): 83-92. DOI:10.1006/jaer.1998.0349 (0)
[25]
尹娟, 费良军, 田军仓, 等. 水稻田中氮肥损失研究进展[J]. 农业工程学报, 2005, 21(6): 189-191. [ YIN Juan, FEI Liang-jun, TIAN Jun-cang, et al. Research Advance of Nitrogen Fertilizer Losses From Paddy Field[J]. Transactions of the CSAE, 2005, 21(6): 189-191. DOI:10.3321/j.issn:1002-6819.2005.06.042] (0)
[26]
李娟.不同施肥处理对稻田氮磷流失风险及水稻产量的影响[D].杭州: 浙江大学, 2016.
LI Juan.Effects of Different Fertilization Treatments on Rice Yield and the Risk of Nitrogen and Phosphorus Losses From Paddy Field[D].Hangzhou: Zhejiang University, 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y3029134 (0)
[27]
夏小江.太湖地区稻田氮磷养分径流流失及控制技术研究[D].南京: 南京农业大学, 2012.
XIA Xiao-jiang.Study on Nitrogen and Phosphorus Runoff Losses From Paddy Field and Control Technology in Tai Lake Area[D].Nanjing: Nanjing Agricultural University, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2360023 (0)
[28]
ZÖBISCH M A, RICHTER C, HEILIGTAG B, et al. Nutrient Losses From Cropland in the Central Highlands of Kenya Due to Surface Runoff and Soil Erosion[J]. Soil and Tillage Research, 1995, 33(2): 109-116. DOI:10.1016/0167-1987(94)00441-G (0)
[29]
黄宗楚.上海旱地农田氮磷流失过程及环境效应研究[D].上海: 华东师范大学, 2005.
HUANG Zong-chu.The Study of Nonirrigated Farmland Nitrogen and Phosphorus Loss Course and Environmental Effect in Shanghai[D].Shanghai: East China Normal University, 2005. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y739652 (0)
[30]
DARZI-NAFTCHALI A, SHAHNAZARI A, KARANDISH F. Phosphorus Balance and Risk Assessment in the Rice-Canola Cropping System Under Different Drainage Strategies[J]. Archives of Agronomy and Soil Science, 2016, 62(11): 1554-1566. DOI:10.1080/03650340.2016.1155116 (0)
[31]
BARTON A P, FULLEN M A, MITCHELL D J, et al. Effects of Soil Conservation Measures on Erosion Rates and Crop Productivity on Subtropical Ultisols in Yunnan Province, China[J]. Agriculture, Ecosystems & Environment, 2004, 104(2): 343-357. (0)
[32]
KUMAR R, AMBASHT R S, SRIVASTAVA A, et al. Reduction of Nitrogen Losses Through Erosion by Leonotis nepetaefolia and Sida acuta in Simulated Rain Intensities[J]. Ecological Engineering, 1997, 8(3): 233-239. DOI:10.1016/S0925-8574(97)00011-6 (0)
[33]
高超, 朱继业, 朱建国, 等. 不同土地利用方式下的地表径流磷输出及其季节性分布特征[J]. 环境科学学报, 2005, 25(11): 1543-1549. [ GAO Chao, ZHU Ji-ye, ZHU Jian-guo, et al. Phosphorus Exports via Overland Runoff Under Different Land Uses and Their Seasonal Pattern[J]. Acta Scientiae Circumstantiae, 2005, 25(11): 1543-1549. DOI:10.3321/j.issn:0253-2468.2005.11.018] (0)
[34]
黄沈发, 陆贻通, 沈根祥, 等. 上海郊区旱作农田氮素流失研究[J]. 农村生态环境, 2005, 21(2): 50-53. [ HUANG Shen-fa, LU Yi-tong, SHEN Gen-xiang, et al. Nitrogen Losses From Dry Farming Fields in Shanghai Suburbs[J]. Rural Eco-Environment, 2005, 21(2): 50-53. DOI:10.3969/j.issn.1673-4831.2005.02.011] (0)
[35]
朱新开, 盛海君, 夏小燕, 等. 稻麦轮作田氮素径流流失特征初步研究[J]. 生态与农村环境学报, 2006, 22(1): 38-41, 66. [ ZHU Xin-kai, SHENG Hai-jun, XIA Xiao-yan, et al. Nitrogen Loss With Runoff and Drainage From Farmland Under Wheat-Rice Rotation[J]. Journal of Ecology and Rural Environment, 2006, 22(1): 38-41, 66. DOI:10.3969/j.issn.1673-4831.2006.01.009] (0)
[36]
WON C, SHIN M H, LEE S, et al. NPS Pollution Reduction From Alpine Fields Using Surface Cover Material and Soil Amendments[J]. Irrigation and Drainage, 2016, 65(S2): 193-199. (0)
[37]
陈育超, 李阳, 于海明, 等. 太湖地区何家浜流域初期雨水对水稻田污染物的冲刷效应[J]. 环境工程学报, 2016, 10(2): 573-580. [ CHEN Yu-chao, LI Yang, YU Hai-ming, et al. Effects of Rainfall-Induced Flush on Pollutants From Rice-Field in Hejiabang Creek Basin of Taihu Lake Region[J]. Chinese Journal of Environmental Engineering, 2016, 10(2): 573-580.] (0)
[38]
张继宗.太湖水网地区不同类型农田氮磷流失特征[D].北京: 中国农业科学院, 2006.
ZHANG Ji-zong.Characteristics of Nitrogen and Phosphorus Losses From Different Farmlands in Taihu Lake Riverine Area[D].Beijing: The Chinese Academy of Agricultural Sciences, 2006. http://cdmd.cnki.com.cn/article/cdmd-82101-2006110907.htm (0)
[39]
SHARPLEY A, DANIELS M, BERRY L, et al. Arkansas Discovery Farms:Documenting Water Quality Benefits of On-Farm Conservation Management and Empowering Farmers[J]. Acta Agriculturae Scandinavica Section B:Soil & Plant Science, 2015, 65(Suppl. 2): 186-198. (0)
[40]
KUPKANCHANAKUL W, KWONPONGSAGOON S, BADER H P, et al. Integrating Spatial Land Use Analysis and Mathematical Material Flow Analysis for Nutrient Management:A Case Study of the Bang Pakong River Basin in Thailand[J]. Environmental Management, 2015, 55(5): 1022-1035. DOI:10.1007/s00267-014-0441-5 (0)
[41]
陈成龙, 高明, 倪九派, 等. 三峡库区小流域稻田空间格局对氮磷流失影响[J]. 环境科学, 2017, 38(5): 1889-1897. [ CHEN Cheng-long, GAO Ming, NI Jiu-pai, et al. Influence of Spatial Pattern of Paddy Field on the Losses of Nitrogen and Phosphorus in Three Gorges Reservoir Area[J]. Environmental Science, 2017, 38(5): 1889-1897. DOI:10.3969/j.issn.1000-6923.2017.05.036] (0)
[42]
项大力, 杨学云, 孙本华, 等. 灌溉水平对塿土磷素淋失的影响[J]. 植物营养与肥料学报, 2010, 16(1): 112-117. [ XIANG Da-li, YANG Xue-yun, SUN Ben-hua, et al. Impacts of Irrigation Regimes on Phosphorus Leaching in Manural Loessial Soil[J]. Plant Nutrition and Fertilizer Science, 2010, 16(1): 112-117.] (0)
[43]
BAKER J L, LAFLEN J M, HARTWIG R O. Effects of Corn Residue and Herbicide Placement on Herbicide Runoff Losses[J]. Transactions of the ASAE, 1982, 25(2): 340-343. DOI:10.13031/2013.33532 (0)
[44]
BAKER J L, LAFLEN J M, JOHNSON H P. Effect of Tillage Systems on Runoff Losses of Pesticides, a Rainfall Simulation Study[J]. Transactions of the ASAE, 1978, 21(5): 886-892. DOI:10.13031/2013.35408 (0)
[45]
梁新强, 田光明, 李华, 等. 天然降雨条件下水稻田氮磷径流流失特征研究[J]. 水土保持学报, 2005, 19(1): 59-63. [ LIANG Xin-qiang, TIAN Guang-ming, LI Hua, et al. Study on Characteristic of Nitrogen and Phosphorus Loss From Rice Field by Natural Rainfall Runoff[J]. Journal of Soil and Water Conservation, 2005, 19(1): 59-63. DOI:10.3321/j.issn:1009-2242.2005.01.015] (0)
[46]
邱卫国, 唐浩, 王超. 上海郊区水稻田氮素渗漏流失特性及控制对策[J]. 中国环境科学, 2005, 25(5): 558-562. [ QIU Wei-guo, TANG Hao, WANG Chao. The Characters of N-Element Leakage and Countermeasures in Rice Fields in Shanghai Suburb[J]. China Environmental Science, 2005, 25(5): 558-562. DOI:10.3321/j.issn:1000-6923.2005.05.012] (0)
[47]
张丽娟, 马友华, 石英尧, 等. 灌溉与施肥对稻田氮磷径流流失的影响[J]. 水土保持学报, 2011, 25(6): 7-12. [ ZHANG Li-juan, MA You-hua, SHI Ying-yao, et al. Effects of Irrigation and Fertilization on Nitrogen and Phosphorus Runoff From Paddy Field[J]. Journal of Soil and Water Conservation, 2011, 25(6): 7-12.] (0)
[48]
叶玉适, 梁新强, 金熠, 等. 节水灌溉与控释肥施用对稻田田面水氮素变化及径流流失的影响[J]. 水土保持学报, 2014, 28(5): 105-112. [ YE Yu-shi, LIANG Xin-qiang, JIN Yi, et al. Dynamic Variation and Runoff Loss of Nitrogen in Surface Water of Paddy Field as Affected by Water-Saving Irrigation and Controlled-Release Fertilizer Application[J]. Journal of Soil and Water Conservation, 2014, 28(5): 105-112.] (0)
[49]
SCHOONOVER J E, WILLIARD K W J, ZACZEK J J, et al. Nutrient Attenuation in Agricultural Surface Runoff by Riparian Buffer Zones in Southern Illinois, USA[J]. Agroforestry Systems, 2005, 64(2): 169-180. DOI:10.1007/s10457-004-0294-7 (0)
[50]
黄满湘, 章申, 唐以剑, 等. 模拟降雨条件下农田径流中氮的流失过程[J]. 土壤与环境, 2001, 10(1): 6-10. [ HUANG Man-xiang, ZHANG Shen, TANG Yi-jian, et al. Nitrogen Losses From Farm Runoff Under Simulated Rainfall Conditions[J]. Soil and Environmental Sciences, 2001, 10(1): 6-10. DOI:10.3969/j.issn.1674-5906.2001.01.002] (0)
[51]
于兴修, 杨桂山, 梁涛. 西苕溪流域土地利用对氮素径流流失过程的影响[J]. 农业环境保护, 2002, 21(5): 424-427. [ YU Xing-xiu, YANG Gui-shan, LIANG Tao. Effects of Land Use in Xitiaoxi Catchment on Nitrogen Losses From Runoff[J]. Agro-Environment Protection, 2002, 21(5): 424-427.] (0)
[52]
陈颖, 赵磊, 杨勇, 等. 海河流域水稻田氮磷地表径流流失特征初探[J]. 农业环境科学学报, 2011, 30(2): 328-333. [ CHEN Ying, ZHAO Lei, YANG Yong, et al. Preliminary Study on Characteristics of Nitrogen and Phosphorus Runoff Losses From Rice Fields in Hai River Basin, China[J]. Journal of Agro-Environment Science, 2011, 30(2): 328-333.] (0)
[53]
COX F R, HENDRICKS S E. Soil Test Phosphorus and Clay Content Effects on Runoff Water Quality[J]. Journal of Environmental Quality, 2000, 29(5): 1582-1586. (0)
[54]
叶玉适, 梁新强, 李亮, 等. 不同水肥管理对太湖流域稻田磷素径流和渗漏损失的影响[J]. 环境科学学报, 2015, 35(4): 1125-1135. [ YE Yu-shi, LIANG Xin-qiang, LI Liang, et al. Effects of Different Water and Nitrogen Managements on Phosphorus Loss via Runoff and Leaching From Paddy Fields in Taihu Lake Basin[J]. Acta Scientiae Circumstantiae, 2015, 35(4): 1125-1135.] (0)
[55]
HECKRATH G, BROOKES P C, POULTON P R, et al. Phosphorus Leaching From Soils Containing Different Phosphorus Concentrations in the Broadbalk Experiment[J]. Journal of Environmental Quality, 1995, 24(5): 904-910. (0)
[56]
盛海君, 夏小燕, 杨丽琴, 等. 施磷对土壤速效磷含量及径流磷组成的影响[J]. 生态学报, 2004, 24(12): 2837-2840. [ SHENG Hai-jun, XIA Xiao-yan, YANG Li-qin, et al. Effects of Phosphorus Application on Soil Available P and Different P Form in Runoff[J]. Acta Ecologica Sinica, 2004, 24(12): 2837-2840. DOI:10.3321/j.issn:1000-0933.2004.12.025] (0)
[57]
陈志良, 程炯, 刘平, 等. 暴雨径流对流域不同土地利用土壤氮磷流失的影响[J]. 水土保持学报, 2008, 22(5): 30-33. [ CHEN Zhi-liang, CHENG Jiong, LIU Ping, et al. An Experiment on Influence of Storm on Nitrogen Loss and Phosphorus Loss Under Different Land Use in River Basin[J]. Journal of Soil and Water Conservation, 2008, 22(5): 30-33. DOI:10.3321/j.issn:1009-2242.2008.05.007] (0)
[58]
焦少俊, 胡夏民, 潘根兴, 等. 施肥对太湖地区青紫泥水稻土稻季农田氮磷流失的影响[J]. 生态学杂志, 2007, 26(4): 495-500. [ JIAO Shao-jun, HU Xia-min, PAN Gen-xing, et al. Effects of Fertilization on Nitrogen and Phosphorus Run-off Loss From Qingzini Paddy Soil in Taihu Lake Region During Rice Growth Season[J]. Chinese Journal of Ecology, 2007, 26(4): 495-500. DOI:10.3321/j.issn:1000-4890.2007.04.007] (0)
[59]
冯国禄, 龚军慧. 人工降雨对稻田中氮磷动态变化的影响研究[J]. 水土保持学报, 2011, 25(2): 130-133. [ FENG Guo-lu, GONG Jun-hui. Effects of Artificial Rainfall on Dynamics of Nitrogen and Phosphorus in Paddy Field[J]. Journal of Soil and Water Conservation, 2011, 25(2): 130-133.] (0)
[60]
管毓堂, 苏保林, 黄宁波, 等. 苏州相城区望庭镇水稻田降雨径流污染特征研究[J]. 北京师范大学学报(自然科学版), 2014, 50(5): 496-502. [ GUAN Yu-tang, SU Bao-lin, HUANG Ning-bo, et al. Runoff Pollution Characteristics of a Small Paddy Plot in Wangting Town of Xiangcheng Distinct, Suzhou City, Jiangsu Province[J]. Journal of Beijing Normal University(Natural Sciences), 2014, 50(5): 496-502.] (0)
[61]
张继宗, 雷秋良, 左强, 等. 模拟降雨条件下太湖地区稻田氮素径流流失特征[J]. 湖北农业科学, 2009, 48(11): 2688-2692. [ ZHANG Ji-zong, LEI Qiu-liang, ZUO Qiang, et al. Nitrogen Loss Characteristics With Runoff Under Simulated Rainfall Conditions in Paddy Field of Taihu Lake Region[J]. Hubei Agricultural Sciences, 2009, 48(11): 2688-2692. DOI:10.3969/j.issn.0439-8114.2009.11.021] (0)
[62]
尹海峰.不同水氮条件对水稻生长发育及稻田氮素渗漏淋溶的影响[D].南京: 南京农业大学, 2012.
YIN Hai-feng.Effect of Different Water and Nitrogen Conditions on Growth and Nitrogen Leaching of Rice[D].Nanjing: Nanjing Agricultural University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10307-1013286021.htm (0)
[63]
孙亚亚, 俞双恩, 陈军, 等. 暴雨条件下不同灌排模式稻田排水中氮磷变化规律[J]. 河海大学学报(自然科学版), 2014, 42(5): 455-459. [ SUN Ya-ya, YU Shuang-en, CHEN Jun, et al. Changes of Nitrogen and Phosphorus Concentrations in Surface Drainage From Paddy Field Under Different Irrigation and Drainage Modes[J]. Journal of Hohai University (Natural Sciences), 2014, 42(5): 455-459. DOI:10.3876/j.issn.1000-1980.2014.05.015] (0)
[64]
王森, 朱昌雄, 耿兵. 土壤氮磷流失途径的研究进展[J]. 中国农学通报, 2013, 29(33): 22-25. [ WANG Sen, ZHU Chang-xiong, GENG Bing. Research Advancement in Loss Pathways of Nitrogen and Phosphorus in Soils[J]. Chinese Agricultural Science Bulletin, 2013, 29(33): 22-25.] (0)
[65]
张敏, 田玉华, 尹斌, 等. 稻田氮素淋失测定方法的研究进展[J]. 土壤, 2015, 47(3): 440-445. [ ZHANG Min, TIAN Yu-hua, YIN Bin, et al. A Review of Methods to Determine Nitrogen Leaching in Paddy Fields[J]. Soils, 2015, 47(3): 440-445.] (0)
[66]
CARLOS F S, MARAFON A J, ANDREAZZA R, et al. Electrochemical Changes and Nutrient Dynamics in the Solution of Soil With Rice Irrigated With Treated Industrial Leachate[J]. Revista Brasileira de Ciência do Solo, 2015, 39(2): 466-474. DOI:10.1590/01000683rbcs20140127 (0)
[67]
刘方春, 邢尚军, 段春华, 等. 腐殖酸缓效肥料的NO3--N田间淋溶及土壤残留[J]. 环境科学, 2010, 31(7): 1619-1624. [ LIU Fang-chun, XIN Shang-jun, DUAN Chun-hua, et al. Nitrate Nitrogen Leaching and Residue of Humic Acid Fertilizer in Field Soil[J]. Environmental Science, 2010, 31(7): 1619-1624.] (0)
[68]
MURTAZA B, MURTAZA G, IMRAN M, et al.Yield and Nitrogen Use Efficiency of Rice-Wheat Cropping System in Gypsum Amended Saline-Sodic Soil[J].Journal of Soil Science and Plant Nutrition, 2017, 17(3)[2017-07-01].https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718-95162017000300011&lng=en&nrm=iso&tlng=en.doi:10.4067/S0718-95162017000300011. (0)
[69]
陈振华, 陈利军, 武志杰, 等. 下辽河平原潮棕壤稻田的无机态氮淋溶[J]. 水土保持学报, 2006, 20(1): 59-62. [ CHEN Zhen-hua, CHEN Li-jun, WU Zhi-jie, et al. Inorganic Nitrogen Leaching From Meadow Brown Rice Field on Lower Liaohe River Plain as Affected by Chemical N Fertilization[J]. Journal of Soil and Water Conservation, 2006, 20(1): 59-62. DOI:10.3321/j.issn:1009-2242.2006.01.014] (0)
[70]
陈宝, 颜朝阳, 范迪富, 等. 用土壤溶液提取器采集土壤溶液方法与效果[J]. 江苏地质, 2004, 28(3): 151-154. [ CHEN Bao, YAN Zhao-yang, FAN Di-fu, et al. Methods and Effect of Soil Solution Collection by Soil Solution Extractor[J]. Jiangsu Geology, 2004, 28(3): 151-154. DOI:10.3969/j.issn.1674-3636.2004.03.006] (0)
[71]
胡春胜, 程一松, 高鹭, 等. 太行山山前平原冬小麦田深层土体硝态氮累积特征研究[J]. 中国生态农业学报, 2001, 9(1): 19-20. [ HU Chun-sheng, CHENG Yi-song, GAO Lu, et al. On the Nitrate-N Accumulated Characteristics in Deep Soil Layer of Winter Wheat Field in Taihang Pledmont[J]. Chinese Journal of Eco-Agriculture, 2001, 9(1): 19-20.] (0)
[72]
ALLAIRE-LEUNG S E, WU L, MITCHELL J P, et al. Nitrate Leaching and Soil Nitrate Content as Affected by Irrigation Uniformity in a Carrot Field[J]. Agricultural Water Management, 2001, 48(1): 37-50. DOI:10.1016/S0378-3774(00)00112-8 (0)
[73]
张翼.上海郊区稻田氮磷流失监测及其生态阻断系统构建[D].长春: 吉林农业大学, 2014.
ZHANG Yi.Loss of Nitrogen and Phosphorus Monitoring in Paddy Fields of Shanghai Suburbs and Ecological Blocking System Constructing[D].Changchun: Jilin Agricultural University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10193-1014053020.htm (0)
[74]
TIAN H Y, YU H, YANG L Z, et al. Nitrogen Runoff and Leaching Losses During Rice-Wheat Rotations in Taihu Lake Region, China[J]. Pedosphere, 2007, 17(4): 445-456. DOI:10.1016/S1002-0160(07)60054-X (0)
[75]
张惠.黄河上游灌区稻田系统氮素气态损失及平衡研究[D].北京: 中国农业科学院, 2011.
ZHANG Hui.Gaseous Loss and Balance of Nitrogen From Paddy Field in Irrigation of Area of the Upper Yellow River[D].Beijing: Chinese Academy of Agricultural Sciences, 2011. http://cdmd.cnki.com.cn/Article/CDMD-82101-1011158623.htm (0)
[76]
纪雄辉, 郑圣先, 聂军, 等. 稻田土壤上控释氮肥的氮素利用率与硝态氮的淋溶损失[J]. 土壤通报, 2007, 38(3): 467-471. [ JI Xiong-hui, ZHENG Sheng-xian, NIE Jun, et al. Nitrogen Recovery and Nitrate Leaching From a Controlled Release Nitrogen Fertilizer in an Irrigated Paddy Soil[J]. Chinese Journal of Soil Science, 2007, 38(3): 467-471. DOI:10.3321/j.issn:0564-3945.2007.03.011] (0)
[77]
谢学俭, 冉炜, 沈其荣, 等. 田间条件下32P在淹水水稻土中的垂直运移[J]. 南京农业大学学报, 2003, 26(3): 56-59. [ XIE Xue-jian, RAN Wei, SHEN Qi-rong, et al. Vertical Movement of 32P in Waterlogged Paddy Soils Under Field Conditions[J]. Journal of Nanjing Agricultural University, 2003, 26(3): 56-59.] (0)
[78]
纪雄辉.洞庭湖区典型稻田土壤养分流失规律及流域模拟研究[D].长沙: 湖南农业大学, 2007.
JI Xiong-hui.Studies on Regulation of Nutrient Loss in Typical Paddy Soils and Stimulation of Watershed in Dongting Lake Area[J].Changsha: Hunan Agricultural University, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10537-2007208162.htm (0)
[79]
王家玉, 王胜佳, 陈义, 等. 稻田土壤中氮素淋失的研究[J]. 土壤学报, 1996, 33(1): 28-36. [ WANG Jia-yu, WANG Sheng-jia, CHEN Yi, et al. Study on the Nitrogen Leaching in Rice Fields[J]. Acta Pedologica Sinica, 1996, 33(1): 28-36. DOI:10.3321/j.issn:0564-3929.1996.01.004] (0)
[80]
叶玉适, 梁新强, 周柯锦, 等. 节水灌溉与控释肥施用对太湖地区稻田土壤氮素渗漏流失的影响[J]. 环境科学学报, 2015, 35(1): 270-279. [ YE Yu-shi, LIANG Xin-qiang, ZHOU Ke-jin, et al. Effects of Water-Saving Irrigation and Controlled-Release Fertilizer Application on Nitrogen Leaching Loss of Paddy Soil in Taihu Lake Region[J]. Acta Scientiae Circumstantiae, 2015, 35(1): 270-279.] (0)
[81]
谢育平.施用畜禽粪便稻田土壤氮磷养分迁移特征的研究[D].保定: 河北农业大学, 2006.
XIE Yu-ping.Study on the Characteristics of Nitrogen and Phosphorus Transfer in Paddy Soils Under Poultry Manure Practices[D].Baoding: Hebei Agricultural University, 2006. http://cdmd.cnki.com.cn/Article/CDMD-11920-2006075172.htm (0)
[82]
ZHANG H C, CAO Z H, WANG G P, et al. Winter Runoff Losses of Phosphorus From Paddy Soils in the Taihu Lake Region of South China[J]. Chemosphere, 2003, 52(9): 1461-1466. DOI:10.1016/S0045-6535(03)00483-1 (0)
[83]
RYDEN J C, SYERS J K, HARRIS R F. Phosphorus in Runoff and Streams[J]. Advances in Agronomy, 1974, 25: 1-45. DOI:10.1016/S0065-2113(08)60777-4 (0)
[84]
BLAKE L, HESKETH N, FORTUNE S, et al. Assessing Phosphorus 'Change-Points' and Leaching Potential by Isotopic Exchange and Sequential Fractionation[J]. Soil Use and Management, 2010, 18(3): 199-207. (0)
[85]
DANIEL T C, EDWARDS D R, SHARPLEY A N. Effect of Extractable Soil Surface Phosphorus on Runoff Water Quality[J]. Transactions of the ASAE, 1993, 36(4): 1079-1085. DOI:10.13031/2013.28437 (0)
[86]
牛新湘, 马兴旺. 农田土壤养分淋溶的研究进展[J]. 中国农学通报, 2011, 27(3): 451-456. [ NIU Xin-xiang, MA Xing-wang. Research Advances on Leaching of Fertilizer Nutrients From Agricultural Soils[J]. Chinese Agricultural Science Bulletin, 2011, 27(3): 451-456.] (0)
[87]
彭世彰, 黄万勇, 杨士红, 等. 田间渗漏强度对稻田磷素淋溶损失的影响[J]. 节水灌溉, 2013(9): 36-39. [ PENG Shi-zhang, HUANG Wan-yong, YANG Shi-hong, et al. Effect of Field Seepage Rate on Phosphorus Leaching Losses in Paddy Fields[J]. Water Saving Irrigation, 2013(9): 36-39. DOI:10.3969/j.issn.1007-4929.2013.09.009] (0)
[88]
王小治, 盛海君, 栾书荣, 等. 渗育性水稻土渗滤液中的磷组分研究[J]. 土壤学报, 2005, 42(1): 78-83. [ WANG Xiao-zhi, SHENG Hai-jun, LUAN Shu-rong, et al. Fractionation of Phosphorus in Leachate From Percogenic Paddy Soils in the Taihu Lake Region[J]. Acta Pedologica Sinica, 2005, 42(1): 78-83. DOI:10.3321/j.issn:0564-3929.2005.01.012] (0)
[89]
LÜ J L, FORTUNE S, BROOKES P. Fractions in Drainage Waters From the Broadbalk Continuous Wheat Experiment at Rothamsted[J]. Pedosphere, 2004, 14(2): 235-240. (0)
[90]
陈国军, 曹林奎, 陆贻通, 等. 稻田氮素流失规律测坑研究[J]. 上海交通大学学报(农业科学版), 2003, 21(4): 320-324. [ CHEN Guo-jun, CAO Lin-kui, LU Yi-tong, et al. Study of the Testing-Hole on the Nitrogen Loss in the Rice Field[J]. Journal of Shanghai Jiaotong University (Agricultural Science), 2003, 21(4): 320-324. DOI:10.3969/j.issn.1671-9964.2003.04.013] (0)
[91]
姜萍, 袁永坤, 朱日恒, 等. 节水灌溉条件下稻田氮素径流与渗漏流失特征研究[J]. 农业环境科学学报, 2013, 32(8): 1592-1596. [ JIANG Ping, YUAN Yong-kun, ZHU Ri-heng, et al. Study on the Nitrogen Loss From Paddy Fields on Different Water Management[J]. Journal of Agro-Environment Science, 2013, 32(8): 1592-1596.] (0)
[92]
尹海峰, 焦加国, 孙震, 等. 不同水肥管理模式对太湖地区稻田土壤氮素渗漏淋溶的影响[J]. 土壤, 2013, 45(2): 199-206. [ YIN Hai-feng, JIAO Jia-guo, SUN Zhen, et al. Nitrogen Leaching Losses From Paddy Fields Under Different Water and Fertilizer Managements in Taihu Lake Area[J]. Soils, 2013, 45(2): 199-206.] (0)
[93]
张金福.施用鸡粪和化肥对稻麦轮作农田土壤肥力和氮磷迁移的影响[D].南京: 南京农业大学, 2008.
ZHANG Jin-fu.Effect of Chicken Manure and Chemical Fertilizer Application on Soil Fertility and Transfer of Soil N and P in Rice-Wheat Rotation Systems[D].Nanjing: Nanjing Agricultural University, 2008. http://cdmd.cnki.com.cn/article/cdmd-10307-2009077190.htm (0)
[94]
杨梢娜.杭嘉湖平原稻田不同施氮水平下氮素利用效率及环境效应研究[D].临安: 浙江农林大学, 2010.
YANG Shao-na.Research on Nitrogen Use Efficiency and Environmental Effects of Rice Field Under Different Nitrogen Application in Hangjiahu Plain Region[D].Lin'an: Zhejiang A & F University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10341-1011026889.htm (0)
[95]
YOON K S, CHOI J, SON J G, et al. Concentration Profile of Nitrogen and Phosphorus in Leachate of a Paddy Plot During the Rice Cultivation Period in Southern Korea[J]. Communications in Soil Science and Plant Analysis, 2006, 37(13/14): 1957-1972. (0)
[96]
YANG S H, PENG S Z, XU J Z, et al. Nitrogen Loss From Paddy Field With Different Water and Nitrogen Managements in Taihu Lake Region of China[J]. Communications in Soil Science and Plant Analysis, 2013, 44(16): 2393-2407. DOI:10.1080/00103624.2013.803564 (0)
[97]
胡玉婷, 廖千家骅, 王书伟, 等. 中国农田氮淋失相关因素分析及总氮淋失量估算[J]. 土壤, 2011, 43(1): 19-25. [ HU Yu-ting, LIAO Qian-jiahua, WANG Shu-wei, et al. Statistical Analysis and Estimation of N Leaching From Agricultural FieIds in China[J]. Soils, 2011, 43(1): 19-25. DOI:10.3969/j.issn.1674-5906.2011.01.004] (0)
[98]
左海军, 张奇, 徐力刚. 农田氮素淋溶损失影响因素及防治对策研究[J]. 环境污染与防治, 2008, 30(12): 83-89. DOI:10.3969/j.issn.1001-3865.2008.12.020 (0)
[99]
ZHAO X, ZHOU Y, MIN J, et al. Nitrogen Runoff Dominates Water Nitrogen Pollution From Rice-Wheat Rotation in the Taihu Lake Region of China[J]. Agriculture, Ecosystems & Environment, 2012, 156: 1-11. (0)
[100]
王德建, 林静慧, 夏立忠. 太湖地区稻麦轮作农田氮素淋洗特点[J]. 中国生态农业学报, 2001, 9(1): 16-18. [ WANG De-jian, LIN Jing-hui, XIA Li-zhong. Characteristics of Nitrogen Leaching of Rice-Wheat Rotation Field in Taihu Lake Area[J]. Chinese Journal of Eco-Agriculture, 2001, 9(1): 16-18.] (0)