文章快速检索     高级检索
  生态与农村环境学报  2018, Vol. 34 Issue (8): 733-738   DOI: 10.11934/j.issn.1673-4831.2018.08.009
0
马拉硫磷水生生物基准推导研究
赵然然 1, 周军英 2, 续卫利 2    
1. 南京信息工程大学江苏省大气环境与装备技术协同创新中心, 江苏 南京 210044;
2. 环境保护部南京环境科学研究所, 江苏 南京 210042
摘要:通过开展毒性试验和查阅国内外相关文献,获取马拉硫磷对长江三角洲流域22个代表性物种毒性数据,采用物种敏感度分布法和毒性百分数排序法推导长江三角洲流域马拉硫磷水生生物基准值。结果显示,采用物种敏感度分布法得出的急性基准值和慢性基准值分别为0.865 5和0.036 2 μg·L-1,采用毒性百分数排序法得出的急性基准值和慢性基准值分别为0.400 0和0.033 4 μg·L-1。为充分保护水生生物,建议以毒性百分数排序法推导出的基准值作为长江三角洲流域马拉硫磷水生生物基准推荐值。研究结果可为我国地表水环境质量标准修订及水生生态风险评估提供科学依据。
关键词马拉硫磷    水生生物    基准    长江三角洲流域    
Derivation of Aquatic Life Criteria for Malathion
ZHAO Ran-ran 1, ZHOU Jun-ying 2, XU Wei-li 2    
1. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2. Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
Abstract: The toxicity data of 22 representative aquatic organisms were collected from the laboratory toxicity tests, authoritative toxicity databases and published in literature following principles of accuracy, relevance and reliability. The aquatic life criteria (ALC) for malathion in the Yangtze River Delta Region were derived by Species Sensitivity Distributions (SSDs) and Toxicity Percentile Rank (TPR) respectively. The results show that the acute and chronic ALCs of malathion derived by SSD were 0.865 5 and 0.036 2 μg·L-1, respectively; the acute and chronic ALCs of malathion derived by TPR were 0.400 0 and 0.033 4 μg·L-1, respectively. The final criteria derived by TPR were recommended as ALCs for malathion to protect aquatic organisms in the Yangtze River Delta Region. In addition, the recommended ALCs for malathion were compared with criteria abroad and existing Chinese water quality standards (WQS). The present research could provide scientific reference for WQS revision and aquatic risk assessment in China.
Key words: malathion    aquatic life    criteria    the Yangtze River Delta Region    

目前, 我国农药原药生产量超过140万t·a-1[1], 农药施用量达50~60万t·a-1[2], 长期大量生产和施用农药对地表水环境的负面影响日渐凸显。长江三角洲流域是我国重要农业生产基地, 也是我国农药生产企业最集中地区, 生产农药品种多,产量大[3]。多年来, 农药厂生产废水和农业面源污水对该区域地表水环境质量和水生生态产生巨大压力。

马拉硫磷是一种速效、高选择性有机磷类杀虫杀螨剂, 具有触杀、胃毒和一定的熏蒸作用, 作为取代高毒农药的主力品种在农业生产中使用非常广泛。然而, 马拉硫磷对生物有较强急性毒性, 可作用于水生生物体内乙酰胆碱酯酶, 导致生物神经传导功能紊乱, 并且能在动物肝脏内转化为毒性更强物质, 对水生生物造成危害。近年来, 马拉硫磷在全国多地水体中被检出。马拉硫磷在我国7大流域600多个点位水样的检出率为43.5%[4]。马拉硫磷是长江三角洲地区常用农药品种之一, 并且全国近半数马拉硫磷原药生产企业分布在该区域[5]。该区域水体受马拉硫磷污染的状况尤为严重, 2011年浙江东苕溪水体被检出马拉硫磷[6]; 2012年杭嘉湖地区集中式饮用水源水体中马拉硫磷检出浓度达0.36 μg·L-1[7]

水环境质量标准在水环境管理中发挥着重要作用, 而水质基准值是标准制订的基础和科学依据[8]2。与国外相比, 我国水质基准研究起步较晚, 研究基础薄弱, 虽然近年来取得一定成果, 但总体上还处于学习和探索阶段[9]。虽然GB 3838—2002《地表水环境质量标准》列出马拉硫磷标准限值[10], 但由于在标准制订时缺乏我国农药环境基准方面研究, 定值主要参考国外环境基准和标准, 并不能满足我国水环境保护需要[11]。因此, 笔者以长江三角洲流域为研究区域, 研究马拉硫磷水生生物基准, 为我国农药水质基准研究和地表水环境质量标准修订提供参考。

1 材料与方法 1.1 供试材料 1.1.1 农药品种

w=45%马拉硫磷乳油, 由深圳诺普信农化股份有限公司提供。

1.1.2 试验物种

根据水生生物区域代表性、生物类群代表性、物种敏感性、物种经济与娱乐价值以及基准值推导对毒性数据基本要求, 选择长江三角洲流域6门10科共12个代表物种进行急、慢性毒性试验, 各试验生物物种及其特征详见表 1

表 1 水生生物基准制定受试物种及其特征 Table 1 Test species of aquatic life criteria and their characteristics

为使制定基准值的毒性数据更加丰富, 经查阅相关文献获取斜生栅列藻(Scenedesmus obliquus)、非洲爪蟾蝌蚪(Xenopus laevis)、中国林蛙蝌蚪(Rana chensinensis)、虹鳟鱼(Oncorhynchus mykiss)、蓝鳃太阳鱼(Lepomis macrochirus)、鲤鱼(Cyprinus carpio)、斑点叉尾(Ictalurus punctatus)、罗氏沼虾(Macrobrachium rosenbergii)、锯齿新米虾(Neocaridina denticulate)和克氏原螯虾(Procambarus clarkii)10个物种急性毒性数据[12-17]以及大型溞(Daphnia magna)、斑点叉尾和鲤鱼(Cyprinus carpio)3个物种慢性毒性数据[15]

1.2 试验设计 1.2.1 急性毒性试验

大乳头水螅和中华圆田螺的急性毒性试验方法参照文献[8]380-387和藻7种生物急性毒性试验参照文献[19-22 ]。紫萍、浮萍生长抑制试验及摇蚊急性活动抑制试验参照文献[23]206-217

其余10种物种的急性毒性试验数据由相关文献得到。

1.2.2 慢性毒性试验

仅对黄颡鱼开展慢性毒性试验, 参照文献[23]135-144, 按照急性毒性试验方法对黄颡鱼幼鱼进行预试验, 确定其暴露于马拉硫磷溶液中时全部死亡的最低浓度和全部不死亡的最高浓度, 在此浓度范围内设置5个浓度梯度, 另设1个空白对照组, 每组投入10尾幼鱼。试验周期为28 d, 在此期间每天早、中和晚定时喂食并观察幼鱼生长情况。

其余3种物种的慢性毒性试验数据由相关文献得到。

1.2.3 数据处理

对于藻类、紫萍和浮萍急性毒性试验数据采用Trimmed Spearman-Karber法计算半数效应浓度值(ErC50), 对于大型溞等其他生物急性毒性试验数据采用SPSS 22.0软件计算受试生物在试验期内不同时间点的半数抑制浓度值(EC50)或半致死浓度值(LC50)。对于黄颡鱼慢性毒性数据的幼鱼生长最大无影响浓度值(NOEC)(P < 0.05)采用SPSS 22.0软件进行方差分析。

1.3 马拉硫磷水生生物基准值推导

采用物种敏感度分布法(SSD)和毒性百分数排序法2种方法推导马拉硫磷水生生物基准值。

1.3.1 物种敏感度分布法(SSD)

SSD参见文献[24], 采用各物种LC50(或EC50)和NOEC值等急性或慢性数据构建物种敏感度分布图。将所有物种种平均毒性值由小到大排列, 然后取对数值并计算累积概率, 以浓度对数值为横坐标、以累积概率为纵坐标作图, 选择不同模型拟合SSD曲线。由分布模型对应拟合公式计算对5%水生生物产生危害的污染物浓度, 即HC5值。急性基准值为5%短期危害浓度(STHC5)除以评价因子, 该研究中评价因子为2;慢性基准值为急性基准值除以最终急慢性比。

1.3.2 毒性百分数排序法

毒性百分数排序法参见文献[25], 将所有物种属平均急性值(GMAV)从低到高排序, 计算累积概率P后选择4个P值接近0.05的物种的GMAV, 计算最终急性值(FAV)。最终慢性值(FCV)由FAV除以急慢性比(FACR)得到。最终植物值(FPV)为水生植物毒性试验数据中最小值。最终残留值(FRV)由污染物最大组织浓度除以生物富集系数得到。基准最大浓度(CMC)为FAV除以2。基准连续浓度(CCC)为FCV、FPV和FRV中的最小值。

2 结果与分析 2.1 急、慢性毒性结果

长江三角洲流域12种代表性水生生物急、慢性毒性试验结果和从相关文献中获取的13种代表性水生生物毒性数据见表 2~3

表 2 马拉硫磷对水生生物急性毒性结果 Table 2 The acute toxicity data of malathion to the aquatic organisms

表 3 马拉硫磷对水生生物慢性毒性结果 Table 3 The chronic toxicity data of malathion to the aquatic organisms
2.2 水生生物基准值的推导结果 2.2.1 物种敏感度分布法

对22个物种急性毒性数据进行对数正态分布检验(Shapiro-Wilk检验), 显著性水平P=0.27, 在0.05和0.95之间, 说明符合对数正态分布。采用物种敏感度分布法拟合效果较好的Sigmoid、Gaussian、Gompertz和Exponential Growth这4种模型[8]180推导基准值, 拟合结果见图 1表 4

图 1 采用不同模型拟合马拉硫磷的急性物种敏感度分布曲线 Figure 1 The fitted species sensitivity distribution curves of aquatic life to malathion by different models

表 4 水生生物对马拉硫磷敏感度分布函数 Table 4 The fitted species sensitivity distribution function of aquatic life to malathion by different models

表 4可知, 4种模型分别得到的HC5值相差不大, 其中Sigmoid和Exponential Growth 2种模型得出的结果最接近, 且两者拟合度较高, 相关系数均为0.987 0, 取其中的较低值, 以Exponential Growth模型得到的1.731 μg·L-1为马拉硫磷STHC5值。急性基准值为STHC5除以2, 即由物种敏感度分布法得到的马拉硫磷水生生物急性基准值为0.865 5 μg·L-1

用大型溞、斑点叉尾、鲤鱼和黄颡鱼的急性毒性值分别除以各自慢性毒性值得到各物种平均急慢性比, 最终急慢性比为4个物种平均急慢性比的几何平均值。慢性基准值为急性基准值除以最终急慢性比, 即水生生物慢性基准值为0.036 2 μg·L-1

2.2.2 毒性百分数排序法

计算比较所有物种GMAV及各属P值后, 筛选出P值最接近0.05的溞属、摇蚊属、太阳鱼属和太平洋鲑属, 得到急性基准值(CMC值)为0.400 0 μg·L-1。FCV值为0.033 4 μg·L-1, FPV值取水生植物毒性试验结果中最小值, 即1 690 μg·L-1。由于我国目前未规定马拉硫磷最大组织浓度, FRV值无法得出。马拉硫磷慢性基准值(CCC值)取FCV和FPV中最小值, 即0.033 4 μg·L-1

3 讨论

水生生物基准值是在一定数量毒性数据基础上依据合适计算方法推导得到的。由于不同地域水生生物区系分布和物种敏感性不尽相同, 水生生物基准值也相应具有地域性, 因此制定某国家或地区水生生物基准值, 必须以该国家或地区代表性水生生物物种毒性数据为基础。以马拉硫磷为例, 目前美国制定的马拉硫磷基准连续浓度(慢性基准值)为0.100 μg·L-1, 澳大利亚和新西兰共同制定的慢性基准值为0.05 μg·L-1, 可以看出明显不同。毒性数据数量和来源也要满足一定的要求, 美国采用毒性百分数排序法推导水质基准值, 规定至少需要来自3门8科的水生生物急性毒性数据; 欧盟采用物种敏感度分布法推导水质基准值, 要求采用来自8种不同类群生物至少10个物种的毒性数据; 澳大利亚和新西兰也采用物种敏感度分布法制定水质基准值, 规定至少需要来自4个不同分类类群的5种生物的毒性数据。

所选受试物种是在对长江三角洲流域区系调查的基础上, 充分考虑水生生物的区域代表性、生物类群的代表性、物种敏感性、物种经济和娱乐价值以及作为试验生物的适合性等, 既能够体现长江三角洲流域水生生物区系特点, 生物分类和数量又均能满足甚至超过国外对于基准值推导受试物种选择的要求, 这些物种毒性数据能够满足基准值推导要求。从生物分类上看, 这些试验生物涵盖了长江三角洲流域水生生态系统中刺胞动物门、软体动物门、节肢动物门、脊索动物门、绿藻门及被子植物门6门10科12个代表物种, 从这些物种在水生生态系统中的功能地位看, 包括了初级生产者、初级消费者和次级消费者, 涵盖了水生生态系统的所有功能类群。为丰富毒性数据, 又查阅相关类群生物毒性数据, 补充10个物种急性毒性数据和3个物种慢性毒性数据。笔者共采用22个物种急性毒性数据和其中4个物种慢性毒性数据推导基准值, 保证了研究结果的科学性和可靠性。

采用物种敏感度分布法推导的急性基准值和慢性基准值分别为0.865 5和0.036 2 μg·L-1, 采用毒性百分数排序法推导的急性基准值和慢性基准值分别为0.400 0和0.033 4 μg·L-1, 2种方法推导的基准值相差不大, 但毒性百分数排序法推导的基准值略低。通过比较2种推导方法推导过程发现, 物种敏感度分布法的优点是可以充分利用可获得的代表整个生态系统的毒性数据, 不足之处是没有考虑污染物在生物体内的富集效应。毒性百分数排序法的优点是综合考虑了急性效应、慢性效应和生物富集效应, 但没有考虑物种间营养级关系, 最终用于计算基准值的只是累积概率接近0.05的4个属的毒性数据, 过于依赖于敏感物种数据。采用毒性百分数排序法推导时, 采用4个属(溞属、摇蚊属、太阳鱼属、太平洋鲑属)急性毒性数据, 而马拉硫磷作为一种杀虫剂, 动物毒性高于植物, 这造成毒性百分数排序法推导的基准值略低于物种敏感度分布法。为了充分保护长江三角洲流域水生生态系统, 选取2种方法中数值较低的作为推荐马拉硫磷基准值, 即采用毒性百分数排序法得到的急性基准值为0.400 0 μg·L-1, 慢性基准值为0.033 4 μg·L-1

GB 3838—2002中马拉硫磷标准限值为50 μg·L-1, 而笔者得出的马拉硫磷对水生生物急性基准值为0.400 0 μg·L-1, 慢性基准值为0.033 4 μg·L-1, 标准限值远高于研究结果和国外相应基准值。可见, 我国马拉硫磷水质标准对水生生态系统存在“欠保护”情况。期望推导出的马拉硫磷急慢性基准值可为我国现行地表水环境质量标准修订提供科学参考。

4 结论

(1) 以长江三角洲流域为研究区域, 在获取代表性本土物种毒性数据基础上, 采用物种敏感度分布法和毒性百分数排序法分别推导马拉硫磷水生生物基准值, 并以毒性百分数排序法推导出的基准值为推荐基准值, 即急性基准值和慢性基准值分别为0.400 0和0.033 4 μg·L-1

(2) 研究得出的推荐基准值与美国、澳大利亚和新西兰提出的马拉硫磷相应基准值比较接近。

(3) 我国马拉硫磷标准限值远高于研究得到的推荐基准值和国外基准值, 对水生生物存在“欠保护”情况。

参考文献
[1]
束放, 熊延坤. 我国农药生产应用现状及减量使用重要意义[J]. 营销界(农资与市场), 2016(7): 16-19. (0)
[2]
卜元卿, 孔源, 智勇, 等. 化学农药对环境的污染及其防控对策建议[J]. 中国农业科学导报, 2014, 16(2): 19-25. [ BU Yuan-qing, KONG Yuan, ZHI Yong, et al. Pollution of Chemical Pesticides on Environment and Suggestion for Prevention and Control Countermeasures[J]. Journal of Agricultural Science and Technology, 2014, 16(2): 19-25.] (0)
[3]
梁霞. 长江三角洲流域溴氰菊酯和莠去津水生生物基准研究[D]. 南京: 南京师范大学, 2015.
LIANG Xia. The Aquatic Organism Criteria for Deltamethrin and Atrazine in the Yangtze River Delta Region[D]. Nanjing: Nanjing Normal University, 2015. (0)
[4]
GAO J J, LIU L H, LIU X R, et al. The Occurrence and Spatial Distribution of Organophosphorous Pesticides in Chinese Surface Water[J]. Bulletin of Environmental Contamination and Toxicology, 2009, 82(2): 223-229. DOI:10.1007/s00128-008-9618-z (0)
[5]
农业部农药鉴定所. 中国农药信息网农药登记数据[EB/OL]. [2017-10-11]. http://www.chinapesticide.gov.cn/hysj/index.jhtml.
Institute for the Control of Agrochemicals. Pesticide Registration Data From Chinese Pesticide Information Network[EB/OL]. 2017-10-11]. http://www.chinapesiticide.gov.cn/hysj/index.jhtml. (0)
[6]
卜元卿, 单正军, 孔德洋, 等. 东苕溪流域地表水农业化学品污染状况及生态风险评价[R]. 中国毒理学会环境与生态毒理学专业委员会第二届学术研讨会暨中国环境科学学会环境标准与基准专业委员会2011年学术研讨会会议论文集, 2011. (0)
[7]
朱丽芳, 周文军, 王经委. 杭嘉湖地区饮用水源有机农药污染现状调查分析[J]. 浙江水利水电专科学校学报, 2012, 24(2): 51-54. [ ZHU Li-fang, ZHOU Wen-jun, WANG Jing-wei. Pollution Situation of Semi-Volatile Organic Compounds in Drinking Water Source of Hangjiahu Area[J]. Journal of Zhejiang University of Water Resources and Electric Power, 2012, 24(2): 51-54. DOI:10.3969/j.issn.1008-536X.2012.02.015] (0)
[8]
周军英, 葛峰. 农药水生生物基准制定方法与技术[M]. 北京: 科学出版社, 2014. (0)
[9]
郭海娟, 龚雪, 马放. 我国水质基准现状及发展趋势研究[J]. 环境保护科学, 2017, 43(4): 32-35. [ GUO Hai-juan, GONG Xue, MA Fang. Study of the Status and Development of Water Quality Criteria in China[J]. Environmental Protection Science, 2017, 43(4): 32-35.] (0)
[10]
GB 3838-2002, 地表水环境质量标准[S].
GB 3838-2002, Environmental Quality Standards for Surface Water[S]. (0)
[11]
刘征涛. 水环境质量基准方法与应用[M]. 北京: 科学出版社, 2012: 4. (0)
[12]
吴声敢, 陈丽萍, 吴长兴, 等. 4种杀虫剂对水生生物的急性毒性与安全评价[J]. 浙江农业学报, 2011, 23(1): 101-106. [ WU Sheng-gan, CHEN Li-ping, WU Chang-xing, et al. Acute Toxicity and Safety of Four Insecticides to Aquatic Organisms[J]. Acta Agriculturae Zhejiangensis, 2011, 23(1): 101-106. DOI:10.3969/j.issn.1004-1524.2011.01.021] (0)
[13]
YU S Y, WAGES M R, CAI Q S, et al. Lethal and Sublethal Effects of Three Insecticides on Two Developmental Stages of Xenopus laevis and Comparison With Other Amphibians[J]. Environmental Toxicology and Chemistry, 2013, 32(9): 2056-2064. DOI:10.1002/etc.2280 (0)
[14]
柴丽红, 王宏元, 赵洪峰, 等. 4种农药对中华大蟾蜍蝌蚪和中国林蛙蝌蚪的急性毒性[J]. 安全与环境学报, 2016, 16(6): 377-382. [ CHAI Li-hong, WANG Hong-yuan, ZHAO Hong-feng, et al. Acute Toxicity of Four Kinds of Pesticides to the Larvae of Bufo Gargarizans and Rana Chensinensis[J]. Journal of Safety and Environment, 2016, 16(6): 377-382.] (0)
[15]
USEPA. Ecotox Konwledgebase[DB/OL]. [2017-10-30]. http://cfpub.epa.gov/ecotox/. (0)
[16]
朱岩, 曹莹, 张亚辉, 等. 有机磷农药对锯齿新米虾的毒性及敏感性分析[J]. 中国环境科学, 2017, 37(2): 745-753. [ ZHU Yan, CAO Ying, ZHANG Ya-hui, et al. Toxicity of Organophosphorus Pesticides to Neocaridina denticulate and Species Sensitivity Analysis[J]. China Environmental Science, 2017, 37(2): 745-753.] (0)
[17]
JIMÉNEZ A, CANO E, OCETE M E. Mortality and Survival of Procambarus clarkii Girard, 1852 Upon Exposure to Different Insecticide Products[J]. Bulletin of Environmental Contamination and Toxicology, 2003, 70(1): 131-137. DOI:10.1007/s00128-002-0166-7 (0)
[18]
胡正宏, 李玉成, 郝家胜. 微囊藻毒素-LR对大乳头水螅的急性毒性研究[J]. 安徽农业科学, 2011, 39(29): 17937-17938, 17941. [ HU Zheng-hong, LI Yu-cheng, HAO Jia-sheng. Study on the Acute Toxicity of Microcystin-LR on Hydra magnipapillata[J]. Journal of Anhui Agricultural Sciences, 2011, 39(29): 17937-17938, 17941. DOI:10.3969/j.issn.0517-6611.2011.29.070] (0)
[19]
GB/T 31270. 13-2014, 化学农药环境安全评价试验准则: 第13部分: 溞类急性活动抑制试验[S].
GB/T 31270. 13-2014, Test Guidelines on Environmental Safety Assessment for Chemical Pesticides: Part 13: Daphnia sp. Acute Immobilisation Test[S]. (0)
[20]
GB/T 31270. 12-2014, 化学农药环境安全评价试验准则: 第12部分: 鱼类急性毒性试验[S]. 北京: 国家质量监督及检验检疫总局, 2014.
GB/T 31270. 12-2014, Test Guidelines on Environmental Safety Assessment for Chemical Pesticides: Part 12: Fish Acute Toxicity Test[S]. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2014. (0)
[21]
GB/T 31270. 18-2014, 化学农药环境安全评价试验准则: 第18部分: 天敌两栖类急性毒性试验[S].
GB/T 31270. 18-2014, Test Guidelines on Environmental Safety Assessment for Chemical Pesticides: Part 18: Amphibian Acute Toxicity Test[S]. (0)
[22]
GB/T 31270. 14-2014, 化学农药环境安全评价试验准则: 第14部分: 藻类生长抑制试验[S].
GB/T 31270. 14-2014, Test Guidelines on Environmental Safety Assessment for Chemical Pesticides: Part 14: Alga Growth Inhibition Test[S]. (0)
[23]
环境保护部化学品登记中心. 化学品测试方法生物系统效应卷[M]. 北京: 中国环境出版社, 2013. [ Ministry of Environmental Protection of the People's Republic of China Chemical Registration Center. The Guidelines for the Testing of Chemicals:Effects on Biotic Systems[M]. Beijing: China Environmental Press, 2013.] (0)
[24]
吴丰昌. 水质基准理论与方法学及其案例研究[M]. 北京: 科学出版社, 2012: 87. (0)
[25]
USEPA. Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses[R]. Washington DC, USA: USEPA, 1985. (0)