文章快速检索     高级检索
  生态与农村环境学报  2017, Vol. 33 Issue (4): 297-307   DOI: 10.11934/j.issn.1673-4831.2017.04.002
0
镉胁迫下水生动物的生物标志物研究进展
高天然 1,2, 周可新 2    
1. 南京信息工程大学应用气象学院, 江苏 南京 210044;
2. 环境保护部南京环境科学研究所, 江苏 南京 210042
摘要:生物体特定组织或器官内重金属含量可反映环境重金属污染水平,但不能够提供分子水平的信息。生物标志物的变化可用于评估重金属暴露水平及对生物的潜在不利影响。生物标志物包括暴露标志物、效应标志物和易感性标志物。综述了水生动物抗氧化生物标志物、遗传毒性标志物、乙酰胆碱酯酶、金属硫蛋白和热休克蛋白等几种生物标志物监测水体镉污染的原理和应用现状,可为研究镉对水生动物的毒害机制提供参考,为防控重金属污染、保护水生生态系统提供理论依据。
关键词重金属        水生动物    生物标志物    
Advancement of the Study on Biomarkers of Aquatic Animals Exposed to Cadmium Stress
GAO Tian-ran 1,2, ZHOU Ke-xin 2    
1. School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China;
2. Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
Abstract: The content of heavy metals in a certain tissue or organ of an organism may reflect the level of heavy metal pollution in the environment, but not any information of molecular level. Changes in biomarkers may be used for assessing level of heavy metal exposure and potential adverse effects on living organisms. Biomarkers can be sorted into three major categories: exposure biomarkers, effect biomarkers and susceptibility biomarkers. Principles for using antioxidant, genetic toxicity, acetyl cholinesterase, metallothionein and heat shock proteins biomarkers to monitor Cd pollution of water bodies, and status of their applications are addressed, in an attempt to provide some reference for future studies on mechanism of cadmium toxication of aquatic animals as well as a theoretical basis for prevention and control of heavy metal pollution and protection of the aquatic ecosystem.
Key words: heavy metal    cadmium    aquatic animal    biomarker    

镉(cadmium,Cd)是水生动物生长和发育的非必需元素,对其具有潜在危害[1]。进入生物体内的镉离子主要通过结合活性酶或膜蛋白位点与必需金属竞争来发挥毒性[2-4]。自然环境中的镉主要来源于地壳运动、岩石风化、火山活动或富镉土壤浸出等自然因素,以及采矿、冶炼、生产和使用镍镉电池等人为活动[5]。镉离子易通过摄食、呼吸和吸附作用被生物利用,累积在水体沉积物中和底栖水生生物体内造成急性和慢性中毒,影响生物生存,并通过食物链的富集作用可能引发人类肺、前列腺和肾脏慢性疾病[2, 6-8]。20世纪末,镉及其化合物被国际癌症研究机构(International Agency for Research on Cancer,IARC)列为确定的人类致癌物(carcinogenic to humans),属于Ⅰ类致癌物[9-11]

水生动物作为水生态系统的重要组成部分,可以对环境中的重金属污染做出响应,金属胁迫下水生动物的生理、生化相关指标可作为评价重金属污染响应的生物标志物[12]。生物标志物通过指示分子、细胞和组织水平结构或功能的改变,可表征生物体所处的污染状态。

化学分析方法可定量检测生物体内重金属含量,但无法反映重金属对生物的毒性效应。为了解这些生物效应,需从生物整体、组织、分子水平研究重金属污染作用下水生动物体内各项代谢指标的变化。笔者总结了镉污染条件下水生动物体内生物标志物的研究进展,以期为研究镉对水生动物的毒害作用提供参考,并从中筛选出合适的生物指标来评价水体重金属污染状况。

1 生物标志物概述 1.1 生物标志物定义

生物标志物(biomarker)是从生物细胞和组织中检测到的在生化、生理或遗传分子等方面发生异常变化的信号指标,可用于判断污染物是否作用于生物个体。生物标志物的突出特征主要表现为可被定量测定,能够直接以生物靶为反应终点,具有敏感性和特异性,对污染物的早期预警性强,且测定值与真实剂量的生物化学机制及毒性效应相关[13-15]

1.2 生物标志物分类

生物标志物主要涉及暴露生物标志物(exposure biomarkers)、毒性效应生物标志物(toxic effect biomarkers)和易感性生物标志物(susceptibility biomarkers)3个方面[16-17]。暴露生物标志物通过测定组织中特定污染物或其代谢物,或与内源性物质的反应产物来监测环境金属污染物[18]。暴露生物标志物又分为内部剂量标志物和生物学有效剂量标志物。内部剂量标志物是在生物体内测定的特定污染物及其代谢物含量;生物学有效剂量标志物是指特定污染物及其代谢物与重要的细胞、组织等靶结构相互作用形成的反应产物含量[17]。毒性效应生物标志物是指生物体因暴露外源污染物引起的靶细胞或组织的生物学改变[19]。易感性生物标志物是指由于遗传多样机体对毒物产生效应的差异,如基因多态性就是一种易感性生物标志物[15]

2 镉胁迫的主要生物标志物 2.1 暴露标志物

环境中的镉在进入生物体内各组织器官后才会产生毒害效果。水生动物吸收和积累金属离子方式包括:鳃吸收溶解的金属离子,经循环系统转移到其他器官;或摄取食物直接进入消化系统。镉通过以上2种途径与必需营养物质结合穿过细胞膜进入水生动物体内[20],并通过食物链富集对其他物种包括人类构成较高的毒性风险[21]

水环境中镉暴露剂量的增加及暴露时间的延长会引起镉蓄积量的增加,蓄积量可作为环境中镉污染的暴露标志物,且蓄积情况随着地理环境、生物种类的不同而有所差异。陈璐璐等[22]对太湖动物体内镉暴露水平进行监测,发现东部沿岸区镉暴露浓度值最小,竺山湖区浓度值最大,全湖平均值低于竺山湖区和西部沿岸的暴露水平。水生动物的生活习性决定了镉吸收富集的差异性,一般认为,贝类和甲壳类大多栖息在水体底层,主要以底泥物质为食,它们体内镉的平均含量明显高于食物链更高营养级的鱼类[23]。秦春艳等[24]对珠江口伶仃洋海域的部分水生动物体内镉含量进行测定,发现各种生物对镉的富集能力由大到小依次为双壳类、头足类、甲壳类和鱼类,其中,七丝鲚的镉含量最低,近江牡蛎的镉积累能力最强。

同种生物不同组织对镉的蓄积有一定影响。由于特殊的生存环境以及生理结构,大多数水生动物通过鳃吸收重金属,普遍认为鳃组织具有短暂的重金属贮存功能,是累积重金属最多的器官[25]。对淡水罗氏沼虾不同组织内低浓度镉的生物蓄积量监测发现组织内镉的蓄积水平由高到低依次为鳃、肝和腹部肌肉[26],鳃组织的血淋巴将镉逐步转移到肝脏中,镉暴露下肝组织内镉可完全被金属硫蛋白结合并进行解毒,而鳃不能,致使鳃组织中镉含量最高,继而肝脏上皮细胞分化促使金属离子转移到其他部位,其中腹部肌肉的收缩蛋白对钙离子具有高亲和性,对其他金属表现出较低的亲和力,因此腹部肌肉中镉累积量最少[27];镉诱导华溪蟹的研究得到了类似结果[25]。有研究指出肝脏是鱼类微量金属元素最终的贮存器官[28],如雌性淡水食蚊鱼肝脏细胞膜组分中镉含量明显高于卵黄囊组织中含量[29],可能的原因是镉作用于垂体和性腺,改变促性腺激素的分泌和类固醇激素的活性,雌性硬骨鱼类卵黄发育过程中,肝脏的代谢需求量非常大,肝脏细胞质组分中的金属硫蛋白的合成与贮存增加以清除重金属离子,而这种附加的代谢活动可能最终损害卵黄,抑制卵黄原蛋白的表达,导致卵黄囊重金属累积相对较少[30];但金头鲷镉积累研究表明鳃内镉水平明显高于肝脏、肌肉,这是因为硬骨鱼类鳃表面的非特异性糖蛋白能结合镉离子,并抑制其他组织对镉的吸收[31]。低浓度镉暴露条件下鳎鱼肾组织中被检测出镉蓄积量最高,其后依次是肝、脾,与水环境直接接触的鳃和皮肤受到的影响最小,其原因是镉最早聚积在肝脏中,然后被运到肾脏,但金属硫蛋白很容易被肾小球排出并由肾小管重吸收,致使肾组织中镉含量最高,肾脏释放的镉离子最后进入组织的上皮细胞[32]。水生动物组织内镉蓄积量见表 1[25-26, 29, 31-37]

尽管测定的镉水平能够直接指示环境镉污染的程度,但镉在生物体内的蓄积情况受不同生物种类和非生物环境条件等多种因素的影响[18]。环境监测还应考虑水生动物的游动性,特别是鱼类等,以及种群的人为引入等问题,镉对环境的响应关系还有待进一步的探讨。因此,应用镉检测结果监测水环境污染时,需要选择代表性较强的敏感生物,例如,海洋贻贝[38-40]、溞类[6, 41]、水丝蚓[42]等被认为是较好的环境污染预警监测生物,且选定易于蓄积残留镉的组织,如鳃[33-34]、肝胰脏[29]等进行测定。

表 1 水生动物组织内镉蓄积量 Table 1 Cadmium accumulation in tissues of aquatic animals
2.2 毒性效应标志物 2.2.1 抗氧化生物标志物

镉是非氧化还原活性金属,当镉积累率超过水生动物的排放和解毒能力时,它可以间接引发氧化应激并产生大量氧自由基,进而导致脂质过氧化作用,造成生物系统氧化损伤,引发多种病理改变甚至细胞死亡[43-45]。为响应活性氧引发的细胞损伤,生物体形成了一套抗氧化防御系统,如酶抗氧化系统的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GPX),以及非酶抗氧化系统的谷胱甘肽、锌、硒、维生素E、抗坏血酸、β-胡萝卜素等,都可以清除脂质过氧化产物,抑制活性氧自由基形成,保护大分子免受氧化损伤[46-47]

各种有关金属镉引起氧化应激的研究表明,镉可以诱导动物组织抗氧化酶活性改变[48-51]。研究发现,随着镉浓度的增加和暴露时间的延长,华溪蟹肝胰腺细胞线粒体、消化系统和副性腺中SOD活性均表现出先上升后降低趋势[51-53],这与大型蚤、厚壳贻贝鳃组织、鲂幼鱼的毒性实验研究结果[39, 54-55]相似。将骨螺暴露于不同浓度镉污染物中测定产卵前后不同阶段消化腺内CAT活性变化,发现镉结合蛋白质的巯基破坏了消化腺细胞结构,促使CAT含量增加[49]。镉胁迫作用下厚壳贻贝、鱼类肝脏内GPX活性与镉暴露呈剂量-效应关系[39-56],这些数据表明镉暴露促使生物体抗氧化系统参数发生显著变化。

随着镉离子浓度的升高,过氧化脂质的生成随之增加,抗氧化系统诱导SOD、CAT活性不断上升,加速分解过氧化物,随之刺激GPX分解过氧化物,从而刺激活性氧自由基的生成,进一步间接诱导SOD、CAT活性[57]。因此,镉污染作用下抗氧化酶活性的改变趋势不能概化,如镉胁迫下贻贝抗氧化酶家族中的GPX和CAT活性增加,而SOD活性无显著变化[58];金头鲷肝脏中GPX活性则呈下降趋势[31]。即使大多数镉诱导的氧化应激都会使水生生物组织的抗氧化酶活性水平显著增加,但因过氧化脂质量随之增加不能及时被清除,抗氧化酶水平的增加不足以抵御氧化应激[59-60]

一些非酶抗氧化物质对镉暴露导致的多器官毒性也具有保护作用,可以通过疏基基团与活性氧直接作用运输和消除活性化合物,间接发挥抗氧化功能,保护器官免受氧化应激,在调节镉诱导的脂质过氧化过程中起着重要作用[61]。锌和硒能辅助酶抗氧化系统修复氧化损伤,当向实验生物投喂含锌或富硒食物时,生物体内抗氧化酶活性趋于正常,两者同时供应可以明显减少受试生物组织器官对镉的吸收,因此推断锌和硒对镉诱导的氧化应激具有保护作用[62-63]。脂质过氧化终产物丙二醛与各种细胞成分发生反应,影响线粒体内关键酶活性,造成酶和膜严重损坏,可作为氧化损伤指标[48, 64-65]。有研究发现,迫于环境污染物镉压力,水生动物会采取细胞和分子水平的自噬防御机制来清除氧化受损的细胞器和蛋白,预先缓解镉诱导的氧化应激,因此,一些水生动物的自噬反应可作为毒性效应标志物监测生态系统健康[66]

各种酶活性及非酶物质的明显改变可以说明,利用氧化应激相关生物标志物来有效监测镉污染具有可行性。但应当注意的是,应用抗氧化酶生物标志物对镉污染进行早期预警时,必须考虑不同种属间的个体差异、同种生物的不同生长发育时期以及不同组织器官等可能对检测结果造成的影响,为此,监测过程应当综合考虑多种因素的影响,以确保检测结果的真实性[18]

2.2.2 特异性基因标志物

镉离子进入细胞参与跨细胞膜运动,会干扰基因表达和DNA修复,从而干扰细胞的稳态和功能。氧化应激、神经毒性和内分泌干扰效应等不同作用机制可以表现为相应的基因表达变化,可将一些特异性表达的基因视为分子生物标志物。研究发现编码抗氧化蛋白的mRNA丰度改变时,相关的酶活性也会发生改变,例如镉胁迫下骨螺肝脏、卵巢中金属硫蛋白、CAT、SOD和GPX的转录显著增加[67];硫酸镉与α-萘黄酮的联合毒性会引起斑马鱼胚胎耐药相关蛋白MRP和细胞色素P450(CYP)的mRNA水平显著下调,导致SOD活性被显著抑制[64]。各种实验已经完成对斑马鱼、金头鲷的研究,结果均显示镉的毒性是由CYP的表达抑制以及产生氧化应激引起的[68-70]。测定镉对底栖寡毛类蠕虫、水稻鳃蚯蚓、颡鱼幼鱼和胡鲶的急性毒性作用,发现较高浓度镉暴露72和96 h,观察到4种动物体表黏液分泌过多,随时间的延长和浓度的提高,颡鱼幼鱼和胡鲶出现自发运动增多、身体失衡、呼吸困难等行为变化,表明镉具有神经系统毒性[71]。低剂量氯化镉持续暴露影响斑马鱼幼鱼的神经发育,具体表现为幼鱼轨迹紊乱、刻板式转向运动增加、原地震颤等状态,且运动距离与镉暴露浓度关系呈剂量依赖性的倒“U”型,光照惊恐反射实验中,幼鱼对突发的光暗变化表现敏感或迟钝[72]。生物体基因表达的异常最终会引起生理层面的改变,关于镉对罗非鱼类固醇激素相关基因的表达影响研究表明,镉毒性具有母系转移特点,处理组雌性激素基因表达均上调,引起卵泡畸形,卵巢发育迟滞,而雄性鱼类没有显著变化;已孕罗非鱼的卵黄原蛋白表达明显下调,无法为胚胎提供氨基酸、脂肪、碳水化合物、维生素和微量元素等营养功能性物质[73]。以上基因表达异常控制的生理活动改变表明镉污染对水生生物具有毒性作用。

2.2.3 遗传毒性标志物

遗传毒性标志物可在分子水平上直接揭示有毒污染物的毒性作用机制和由此引发的细胞及个体水平上的破坏,具有专一性、特异性和广泛适用性,可直接揭示毒性效应的分子反应机理,并通过相关生物标志物揭示组织结构发生的变化,因此,可将DNA损伤视为镉污染的生物标志物。

环境压力胁迫下(如重金属镉污染等)生物体内DNA损伤的主要表现形式为碱基改变、DNA结构破坏、甲基化损伤和DNA交联等,它们对细胞产生遗传毒性或细胞毒性,导致生殖细胞致死突变、畸形和遗传缺陷等[74]。刘建博等[75]观察不同浓度镉离子染毒5 d后的精子染色体装片,发现远低于半致死浓度的镉离子虽未直接造成文蛤死亡,但明显破坏精子DNA完整性,且随浓度的升高,完整性下降趋势逐渐减慢并趋于平稳,说明镉离子对DNA完整性已造成极严重的破坏。曹哲明等[76]发现镉胁迫下鲤鱼基因组存在DNA甲基化现象,且与镉离子处理时间及浓度有关,且幼鱼暴露于不同浓度组试剂中均未出现个体死亡,值得注意的是,急性试验中甲基化位点的改变不一定同时引起DNA损伤,低浓度处理下鲤鱼甲基化水平较低,高浓度条件下甲基化区域发生显著变化,可能导致相应基因的表达异常。这些遗传毒性结果证实镉污染虽未诱导生物生理上的直接破坏,但可对基因表达造成一定程度的干扰。陆慧贤等[77]以缢蛏的消化腺和鳃2种组织细胞为试验对象,应用彗星试验检测水体遗传毒性效应,发现暴露期间DNA损伤程度呈先上升后降低趋势,且同一处理组鳃组织细胞DNA损伤程度高于消化腺细胞,随时间的延长,在组织内抗氧化酶的作用下DNA损伤得到一定程度的修复,因此,将DNA损伤作为镉污染监测指标时应考虑其他生态毒理学指标的影响。

以往急性毒理实验研究中所采用的生物标志物均建立在细胞和生理层面上,虽然可以定量检测水环境中镉污染的毒性效应,但对基因表达层面干扰作用的研究还较少,遗传毒性生物标志物的探索将会成为以后重金属毒性研究的重点。

2.2.4 乙酰胆碱酯酶(acetyl cholinesterase,AChE)

AChE是大多数物种的感觉和神经肌肉系统之间的主要神经传递素,AChE的干扰可能妨碍神经或肌肉纤维的正常通信。一些研究表明,显著抑制AChE活性的污染物包括重金属[78-79],因此,水生动物体内的AChE活性可能是用于环境重金属污染物检测的一个潜在的生物标志物。但不是所有金属胁迫都会对AChE产生抑制作用,例如桡足类日本虎斑猛水溞暴露于镉的生化反应的实验研究发现,经过一定的曝光时间,镉明显提高AChE活性,这与酶活性受到抑制的结论存在分歧,因此,可以推断生物标志物的反应可能与物种有关[80]

部分研究指出,镉离子抑制和激活AChE活性与生物体内金属胁迫相关响应酶的变化有关。例如,随暴露浓度及暴露时间的增加,银鲶鱼大脑和肌肉中AChE活性均呈现下降趋势,同时,脑中硫代巴比妥酸反应物质(TBARS)含量增加,14 d后,发现脑中AChE活性得到恢复,而鱼肌肉内无明显变化,脑中AChE活性抑制状态的解除可能与TBARS水平的增加[81]有关。比较2种重金属对罗非鱼脑和肌肉胆碱酯抑制潜力的研究发现,高浓度镉或铜对胆碱酯的抑制作用比低浓度镉或铜更大,且脑组织比肌肉组织更敏感,且随着暴露时间的延长,镉诱导的酶抑制作用逐渐降低或丧失,可以推测镉诱导作用下鱼体内产生的金属硫蛋白缓解了镉对胆碱酯的抑制效果[82]

综合上述结果可以推断,镉胁迫下水生动物体内AChE的改变可以作为监测镉污染的毒性效应标志物,用于监测水生态系统中有毒污染物的存在,然而与其他生物标志物相比,AChE的敏感程度还较低,有关镉胁迫抑制AChE的机制尚不明确。

2.3 易感性标志物 2.3.1 金属硫蛋白(metallothionein,MT)

金属结合蛋白具有特殊的解毒功能,在金属元素代谢中起到重要作用。MT是一种低分子量蛋白质,其独特的半胱氨酸结构与金属离子具有高亲和力,与重金属形成的金属-硫簇参与金属离子解毒[83]。一般认为,重金属胁迫下MT的生理功能包括调节金属在细胞内的浓度、激活调节蛋白和清除自由基,且MT属于基因多态性家族[84-87],可以在转录水平上被环境中的金属诱导,因此,MT基因表达高低和MT含量的变化可以被认为是金属胁迫的易感性生物标志物[88-90]。研究发现,镉处理诱导四角蛤蜊[91]、底栖摇蚊幼虫[92]、长江华溪蟹[93]、红树林鳉鱼[94]和宽鳍[95]MT mRNA的表达均以剂量依赖的方式上调。缢蛏内脏中MT mRNA的组织特异性表达随镉离子浓度的增加而明显升高,且具有较好的剂量效应和时间依赖性[96],这些结果表明MT是水生环境中重金属的一种潜在生物标志物。

但镉诱导的MT响应也受到生活环境、物种和组织部位等因素的影响。例如,有学者在亚热带墨西哥太平洋牡蛎养殖区的河流附近、养殖区近海河口和养殖区中间位置3个地点对牡蛎进行取样,监测收集的生物体内MT含量变化,发现随着镉浓度的增加所有采样点收集的牡蛎MT含量均升高,且由于河流附近富集大量农药,该采样点MT含量明显高于其他采样点[97]。CRETÌ P等[98]针对密集型、半密集型及非密集型3种鱼类养殖系统探讨金头鲷组织中MT含量情况,结果发现所有养殖类型的金头鲷组织中MT含量由高到低依次为肌肉、肠、肝脏、肾脏和鳃,且密集型和半密集型养殖场中金头鲷肠道中MT含量明显高于非密集型养殖场中金头鲷肠道中MT含量。

此外,水生动物生存环境中存在的其他物质对镉胁迫的响应也有所影响。镉和锌离子对大型蚤的联合毒性研究发现,随着暴露浓度的增加,镉和锌重金属联合毒性相继表现出协同作用、相加作用和拮抗作用[99]。对脊尾白虾卵巢、肌肉、胃和肝胰脏4种组织中MT编码基因EcMT表达情况的研究表明,暴露于氯化镉中12 h基因表达下调,暴露于硫酸铜12 h基因表达上调,而暴露于这2种金属24 h后基因表达出现下调,这表明EcMT的表达可作为海水中镉污染的生物标志物[100]。与实验室环境条件相比,自然条件下各种污染物之间相互作用会影响生物体内MT变化,因此加强对混杂金属共同污染方面的研究具有重要意义。仅凭重金属含量定量描述无法反映重金属对生物的毒性效应机制,在这种情况下,通过测定水生动物体内MT含量及其基因表达水平可以有效地反映水质的污染程度。

2.3.2 热休克蛋白(heats shock proteins,HSP)

HSP是一类分子伴侣,负责蛋白质的折叠和组装,可作为防御蛋白来维持细胞稳态[101]。HSP也称应激蛋白,其合成的增加可以响应各种物理和化学压力,包括温度、盐度、金属和一些外源性化学物质,故这类蛋白质被认为是良好的应激标志物[102]。HSP具有基因多态性[103-105],其基因表达已成为转录调节、应激反应和分子进化的研究对象,可能成为一种新的环境生物标志物,当面对重金属胁迫、氧化应激等环境压力时,细胞产生各种HSP防止外来蛋白质聚集,促进折叠合成新蛋白,稳定并修复损坏蛋白,保护细胞免于受损[49, 66, 106-109]

一些研究表明,冷、热应激可刺激水生动物对环境抗逆性的提高[110-112],如水温升高导致草鱼肝脏和肌肉中HSP73表达上调[113];热休克蛋白对盐胁迫的适应功能机理还不明确,一种可能性是热休克蛋白变异是变性蛋白质的积累结果,导致盐度休克细胞质壁分离过程中造成的水活性降低[114];此外,水生动物特殊的生存环境决定了水体低氧势必会对动物体造成一定损伤,低氧胁迫过程HSP表达量明显高于对照组,且具有组织差异性,复氧后表达水平恢复到正常[115-116],热激蛋白的差异表达在保护和维持低氧胁迫下水生动物的正常生理活动方面具有重要作用[117];以上结果表明热休克蛋白表达差异性可以作为抵御温度、盐度、溶氧应激的重要生理响应机制。

一般情况下,正常细胞内HSP水平较低,而在应激状态如重金属镉暴露下,水生动物体内HSP(HSP60、HSP70和HSP90) 基因的表达明显升高[109, 118]。镉离子亚致死浓度及短期暴露不足以引起金头鲷幼鱼HSP70的预期转录调制,随着浓度升高及暴露时间的延长,HSP70的相对表达水平明显下降[119],这与对太平洋牡蛎[120]、鲫鱼[121]的研究结果相似。也有研究指出,暴露于镉中的鱼不同组织中HSP的表达水平增加[122]或表达无任何变化[123],因此,可以推测该基因的普遍存在及其表达情况在很大程度上取决于组织差异性。

重金属胁迫可以激活机体内应激蛋白的合成,它们根据细胞的损伤程度能产生解毒和抗氧化作用,因此,HSP含量及基因的表达通常被提出作为一个敏感的和有效的生物标志物,用于评估金属镉暴露累积的生物效应。

3 展望

细胞、分子或基因水平上的生物标志物在镉污染暴露和毒性效应的早期预警方面显示了其优越性,并取得了很大进展,但镉对水生动物的生物标志研究尚不全面,并有待进一步研究, 具体表现为以下几个方面:(1) 目前国内外研究多集中于实验室研究条件下、单一或多种重金属联合暴露途径的响应规律,不能有效反映实际水环境中其他污染物复合污染对水生动物的综合影响。(2) 生物标志物监测水体重金属污染具有种间差异性和组织差异性,且生物响应过程容易受到外界环境因素如地理位置、温度、盐度和pH等的影响。(3) 应注重多种类型生物标志物的联合使用,增加总体污染评价结果的可靠性。(4) 加强镉等重金属对水生动物致毒机制方面的研究,有助于解释受重金属胁迫后各种生物标志物的变化规律。

参考文献
[1]
QU R J, WANG X H, FENG M B, et al. The Toxicity of Cadmium to Three Aquatic Organisms (Photobacterium phosphoreum, Daphnia magna and Carassius auratus) Under Different pH Levels[J]. Ecotoxicology & Environmental Safety, 2013, 95(1): 83-90. (0)
[2]
MALEKPOURI P, MOSHTAGHIE A A, KAZEMIAN M, et al. Protective Effect of Zinc on Related Parameters to Bone Metabolism in Common Carp Fish (Cyprinus carpio L.) Intoxified With Cadmium[J]. Fish Physiology and Biochemistry, 2011, 37(1): 187-196. DOI:10.1007/s10695-010-9430-7 (0)
[3]
LIU J, QU W, KADⅡSKA M B. Role of Oxidative Stress in Cadmium Toxicity and Carcinogenesis[J]. Toxicology & Applied Pharmacology, 2009, 238(3): 209-214. (0)
[4]
STANKOVIC S, JOVIC M, STANKOVIC A R, et al.Heavy Metals in Seafood Mussels.Risks for Human Health[M]//Environmental Chemistry for a Sustainable World. [s. l.]:Springer Netherlands, 2012:311-373. (0)
[5]
TULONEN T, ARVOLA L, STRÖMMER R. Cadmium Release From Afforested Peatlands and Accumulation in an Aquatic Ecosystem After Experimental Wood Ash Treatment[J]. European Journal of Forest Research, 2012, 131(5): 1529-1536. DOI:10.1007/s10342-012-0620-y (0)
[6]
WANG Z S, YAN C Z, ZHANG X. Acute and Chronic Cadmium Toxicity to a Saltwater Cladoceran Moina monogolica Daday and Its Relative Importance[J]. Ecotoxicology, 2009, 18(1): 47-54. DOI:10.1007/s10646-008-0255-4 (0)
[7]
HU H.Human Health and Heavy Metals Exposure[M]//MCCALLY M.Life Support:The Environment and Human Health.Cambridge, UK:MIT Press, 2002:65-82. (0)
[8]
IARC.List of Classifications by Cancer Sites With Sufficient or Limited Evidences in Humans, Volumes 1-117[Z/OL]. [2015-11-04].http://monographs.iarc.fr/ENG/Classification/Table4.pdf. http://monographs.iarc.fr/ENG/Classification/Table4.pdf (0)
[9]
[10]
刘美霞, 石峻岭, 吴世达, 等. IARC:900种有害因素及接触场所对人类致癌性的综合评价(一)[J]. 环境与职业医学, 2006, 23(2): 180-184.
LIU Mei-xia, SHI Jun-ling, WU Shi-da, et al. A Comprehensive Evaluation of the Carcinogenic Activity of 900 Kinds of Hazardous Factors and Contact Sites(Ⅰ)[J]. Journal of Environmental and Occupational Medicine, 2006, 23(2): 180-184. (0)
[11]
李旭东, 么鸿雁, 阚坚力, 等. IARC公布的化学物质和混合物及暴露环境对人类致癌性的综合评价[J]. 环境与健康杂志, 2008, 25(12): 1107-1110.
LI Xu-dong, YAO Hong-yan, KAN Jian-li, et al. Comprehensive Evaluation of Chemical Substances and Mixtures and Exposure Environment to Human Carcinogenicity Announced by IARC[J]. Journal of Environment and Health, 2008, 25(12): 1107-1110. DOI:10.3969/j.issn.1001-5914.2008.12.037 (0)
[12]
LUOMA S N, RAINBOW P S, LUOMA S. Metal Contamination in Aquatic Environments:Science and Lateral Management[M]. Cambridge, UK: Cambridge University Press, 2008, 93-125. (0)
[13]
王海黎, 陶澍. 生物标志物在水环境研究中的应用[J]. 中国环境科学, 1999, 19(5): 421-426.
WANG Hai-li, TAO Shu. Application of Biomarkers in Environmental Research[J]. China Environmental Science, 1999, 19(5): 421-426. (0)
[14]
田志环, 焦传珍. 生物标志物在监测环境污染中的应用[J]. 环境与可持续发展, 2007(1): 9-11.
TIAN Zhi-huan, JIAO Chuan-zhen. Application of Biomarkers in Environmental Pollution Monitoring[J]. Environment and Sustainable Development, 2007(1): 9-11. (0)
[15]
丁竹红, 谢标, 王晓蓉. 生物标志物及其在环境中的应用[J]. 农业环境保护, 2002, 21(5): 465-470.
DING Zhu-hong, XIE Biao, WANG Xiao-rong. Biomarkers and Their Application in Environmental Sciences[J]. Agro-Environmental Protection, 2002, 21(5): 465-470. (0)
[16]
尚惠华, 胡绍燊, 刘冬姝, 等. 生物标志物在环境评价中的应用研究概况与趋向[J]. 污染防治技术, 2004, 17(1): 49-94.
SHANG Hui-hua, HU Shao-shen, LIU Dong-shu, et al. An Overview of Research on Biomarkers Applied to Environmental Assessment[J]. Pollution Control Technology, 2004, 17(1): 49-94. (0)
[17]
吴晓薇, 黄国城. 生物标志物的研究进展[J]. 广东畜牧兽医科技, 2008, 33(2): 14-18.
WU Xiao-wei, HUANG Guo-cheng. Research Progress of Biomarkers[J]. Guangdong Journal of Animal and Veterinary Science, 2008, 33(2): 14-18. (0)
[18]
戴伟. 水生动物重金属污染生物标志物的研究进展[J]. 水生态学杂志, 2010, 3(6): 116-119.
DAI Wei. Advances in Biomarkers of Aquatic Animals for Monitoring Heavy Metal Contamination[J]. Journal of Hydroecology, 2010, 3(6): 116-119. (0)
[19]
张忠彬, 李岩, 夏昭林. 效应生物标志物与危险度评价[J]. 职业卫生与应急救援, 2005, 23(1): 15-17.
ZHANG Zhong-bin, LI Yan, XIA Zhao-lin. Biomarker of Effect and Risk Assessment[J]. Occupational Health and Emergency Rescue, 2005, 23(1): 15-17. (0)
[20]
SZYCZEWSKI P, SIEPAK J, NIEDZIELSKI P, et al. Research on Heavy Metals in Poland[J]. Polish Journal of Environmental Studies, 2009, 18(5): 755-768. (0)
[21]
STANKOVIC S, JOVIC M. Health Risks of Heavy Metals in the Mediterranean Mussels as Seafood[J]. Environmental Chemistry Letters, 2012, 10(2): 119-130. DOI:10.1007/s10311-011-0343-1 (0)
[22]
陈璐璐, 周北海, 徐冰冰, 等. 太湖水体典型重金属镉和铬含量及其生态风险[J]. 生态学杂志, 2011, 30(10): 2290-2296.
CHEN Lu-lu, ZHOU Bei-hai, XU Bing-bing, et al. Cadmium and Chromium Concentrations and Their Ecological Risks in the Water Body of Taihu Lake, East China[J]. Chinese Journal of Ecology, 2011, 30(10): 2290-2296. (0)
[23]
罗正明, 贾雷坡, 刘秀丽, 等. 水环境镉对水生动物毒性的研究进展[J]. 食品工业科技, 2015, 36(15): 346-381.
LUO Zheng-ming, JIA Lei-po, LIU Xiu-li, et al. Research Advances in Toxic Effect of Cadmium on Aquatic Animals[J]. Science and Technology of Food Industry, 2015, 36(15): 346-381. (0)
[24]
秦春艳, 方展强, 唐以杰, 等. 珠江口伶仃洋习见水生动物体内重金属含量测定与评价[J]. 华南师范大学学报(自然科学版), 2010, 42(3): 104-114.
QIN Chun-yan, FANG Zhan-qiang, TANG Yi-jie, et al. Contents and Evaluation of Heavy Metals in Common Aquatic From Lingding Yang in Pearal River Estuary, South China Ocean[J]. Journal of South China Normal University (Natural Science Edition), 2010, 42(3): 104-114. DOI:10.6054/j.jscnun.2010.08.024 (0)
[25]
马文丽, 王兰, 何永吉, 等. 镉诱导华溪蟹不同组织金属硫蛋白表达及镉蓄积的研究[J]. 环境科学学报, 2008, 28(6): 1192-1197.
MA Wen-li, WANG Lan, HE Yong-ji, et al. Cadmium Accumulation and Mentallothione in Biosynthesis in the Fresh-Water Crab Sinopotamon henanense[J]. Acta Scientiae Circumstantiae, 2008, 28(6): 1192-1197. (0)
[26]
SOEGIANTO A, WINARNI D, HANDAYANI U S, et al. Bioaccumulation, Elimination, and Toxic Effect of Cadmium on Structure of Gills and Hepatopancreas of Freshwater Prawn Macrobrachium Sintangese(De Man, 1898)[J]. Water Air and Soil Pollution, 2013, 224(5): 1575-1584. DOI:10.1007/s11270-013-1575-4 (0)
[27]
PALANIAPPAN P R, KARTHIKEYAN S. Biaccumulation and Depuration of Chromium in the Selected Organs and Whole Body Tissues of the Freshwater Fish Cirrhinus mrigala Individually and in Binary Solutions With Nickel[J]. Journal of Environmental Sciences, 2009, 21(2): 229-236. DOI:10.1016/S1001-0742(08)62256-1 (0)
[28]
CRETÌ P, TRINCHELLA F, SCUDIERO R. Heavy Metal Bioaccumulation and Metallothionein Content in Tissues of the Sea Bream Sparus aurata From Three Different Fish Farming Systems[J]. Environmental Monitoring & Assessment, 2010, 165(1/2/3/4): 321-329. (0)
[29]
ANNABI A, KESSABI K, KERKENI A, et al. Influence of Cadmium Exposure on Growth and Fecundity of Freshwater Mosquitofish Gambusia affinis:In Situ and in Vivo Studies[J]. Biological Trace Element Research, 2012, 148(3): 345-355. DOI:10.1007/s12011-012-9372-2 (0)
[30]
LI N, ZHAO Y, YANG J. Impact of Waterborne Copper on the Structure of Gills and Hepatopancreas and Its Impact on the Content of Metallothionein in Juvenile Giant Freshwater Prawn Macrobrachium rosenbergii (Crustacea:Decapoda)[J]. Archives of Environmental Contamination and Toxicology, 2007, 52(1): 73-79. DOI:10.1007/s00244-005-0214-5 (0)
[31]
CIRILLO T, COCCHIERI R A, FASANO E, et al. Cadmium Accumulation and Antioxidant Responses in Sparus aurata Exposed to Waterborne Cadmium[J]. Archives of Environmental Contamination & Toxicology, 2012, 62(1): 118-126. (0)
[32]
COSTA P M, CAEIRO S, COSTA M H. Multi-Organ Histological Observations on Juvenile Senegalese soles Exposed to Low Concentrations of Waterborne Cadmium[J]. Fish Physiology & Biochemistry, 2012, 39(2): 143-158. (0)
[33]
ZHAO L Q, YU Z, LIANG J, et al. Environmental Cadmium Exposure Impacts Physiological Responses in Manila clams[J]. Biological Trace Element Research, 2014, 159(1/2/3): 241-253. (0)
[34]
SHEIR S K, HANDY R D, HENRY T B. Effect of Pollution History on Immunological Responses and Organ Histology in the Marine Mussel Mytilus edulis Exposed to Cadmium[J]. Archives of Environmental Contamination & Toxicology, 2013, 64(4): 701-716. (0)
[35]
SOEGIANTO A, CHARMANTIER-DAURES M, TRILLER J P, et al. Impact of Cadmium on the Structure of Gills and Epipodites of the Shrimp Penaeus japonicus (Crustacea:Decapoda)[J]. Aquatic Living Resources, 1999, 12(1): 57-70. DOI:10.1016/S0990-7440(99)80015-1 (0)
[36]
SILVESTRE F, DUCHÊNE C, TRAUSH G, et al. Tissue-Specific Cadmium Accumulation and Metallothionein-Like Protein Levels During Acclimation Process in the Chinese Crab Eriocheir sinensis[J]. Comparative Biochemistry & Physiology Part C:Toxicology & Pharmacology, 2005, 140(1): 39-45. (0)
[37]
李华. 重金属在淡水鱼体内的蓄积、排出机理及其金属硫蛋白的研究[D]. 哈尔滨: 东北农业大学, 2013.
LI Hua.The Research of Heavy Metal Accumulation and Discharge Mechanism in Freshwater Fish and Its Metallothionein[D].Harbin:Northeast Agricultural University, 2013. (0)
[38]
李春娣, 颜文, 龙爱民, 等. Cu暴露条件下翡翠贻贝(Perna viridis)消化腺内金属和类金属硫蛋白的变化[J]. 环境科学, 2007, 28(8): 1788-1795.
LI Chun-di, YAN Wen, LONG Ai-min, et al. Metal Accumulation and MTLP Induction in the Digestive Glands of Perna viridis Exposed to Cu[J]. Environmental Science, 2007, 28(8): 1788-1795. (0)
[39]
彭玲, 曾江宁, 陈全震, 等. 镉对厚壳贻贝急性毒性及对其鳃抗氧化酶活性的影响[J]. 环境科学与技术, 2015, 38(2): 13-24.
PENG Ling, ZENG Jiang-ning, CHEN Quan-zhen, et al. Effects of Cadmium on Antioxidant Enzyme Activity in Gill of Mytilus coruscus and Acute Toxicity of Cadmium on Mytilus coruscus[J]. Environmental Science and Technology, 2015, 38(2): 13-24. (0)
[40]
BARAJ B, NIENCHESKI F, FILLMANN G, et al. Assessing the Effects of Cu, Cd, and Exposure Period on Metallothionein Production in Gills of the Brazilian Brown Mussel Perna perna by Using Factorial Design[J]. Environmental Monitoring & Assessment, 2011, 179(1/2/3/4): 155-162. (0)
[41]
DUMAN F, KAR M. Evaluation of Effects of Exposure Conditions on the Biological Responses of Gammarus pulex Exposed to Cadmium[J]. International Journal of Environmental Science & Technology, 2015, 12(2): 437-444. (0)
[42]
姜东生, 李梅, 崔益斌. 重金属和氯酚对霍甫水丝蚓的急性毒性及水环境安全评价[J]. 中国环境科学, 2014, 34(6): 1572-1578.
JIANG Dong-sheng, LI Mei, CUI Yi-bin. Acute Toxic Effects of Heavy Metals and Chlorophenols on Limnodrilus hoffmeisteri and Safety Assessment of the Aquatic Environment[J]. China Environmental Science, 2014, 34(6): 1572-1578. (0)
[43]
CAO L, HUAN W, LIU J, et al. Accumulation and Oxidative Stress Biomarkers in Japanese Flounder Larvae and Juveniles Under Chronic Cadmium Exposure[J]. Comparative Biochemistry & Physiology Part C:Toxicology & Pharmacology, 2010, 151(3): 386-392. (0)
[44]
CUYPERS A, PLUSQUIN M, REMANS T, et al. Cadmium Stress:An Oxidative Challenge[J]. Biometals, 2010, 23(5): 927-940. DOI:10.1007/s10534-010-9329-x (0)
[45]
SOUID G, SOUAYED N, YAKTITI F, et al. Effect of Acute Cadmium Exposure on Metal Accumulation and Oxidative Stress Biomarkers of Sparus aurata[J]. Ecotoxicology & Environmental Safety, 2013, 89(11): 1-7. (0)
[46]
LEI W, WANG L, LIU D, et al. Histopathological and Biochemical Alternations of the Heart Induced by Acute Cadmium Exposure in the Freshwater Crab Sinopotamon yangtsekiense[J]. Chemosphere, 2011, 84(5): 689-694. DOI:10.1016/j.chemosphere.2011.03.023 (0)
[47]
JIN Y, ZHANG X, SHU L, et al. Oxidative Stress Response and Gene Expression With Atrazine Exposure in Adult Female Zebrafish (Danio rerio)[J]. Chemosphere, 2010, 78(7): 846-852. DOI:10.1016/j.chemosphere.2009.11.044 (0)
[48]
DUMAN F, KAR M. Evaluation of Effects of Exposure Conditions on the Biological Responses of Gammarus pulex Exposed to Cadmium[J]. International Journal of Environmental Science and Technology, 2015, 12(2): 437-444. DOI:10.1007/s13762-013-0425-7 (0)
[49]
MAHMOUD N, DELLALI M, AISSA P, et al. Acute Toxicities of Cadmium and Permethrin on the Pre-Spawning and Post-Spawning Phases of Hexaplex trunculus From Bizerta Lagoon, Tunisia[J]. Environmental Monitoring & Assessment, 2012, 184(10): 5851-5861. (0)
[50]
CUYPERS A, PLUSQUIN M, REMANS T, et al. Cadmium Stress:An Oxidative Challenge[J]. Biometals, 2010, 23(5): 927-940. DOI:10.1007/s10534-010-9329-x (0)
[51]
金芬芬, 徐团, 秦圣娟, 等. 镉对长江华溪蟹肝胰腺线粒体抗氧化酶活力和脂质过氧化水平的影响[J]. 水生生物学报, 2011, 35(6): 1019-1024. (0)
[52]
WU H, XUAN R, LI Y, et al. Biochemical, Histological and Ultrastructural Alterations of the Alimentary System in the Freshwater Crab Sinopotamon henanense Subchronically Exposed to Cadmium[J]. Ecotoxicology, 2014, 23(1): 65-75. DOI:10.1007/s10646-013-1152-z (0)
[53]
侯宇华, 李娜, 李丹, 等. 镉对河南华溪蟹副性腺抗氧化酶活性及脂质、蛋白质和DNA的影响[J]. 水生生物学报, 2015, 39(3): 621-626. DOI:10.7541/2015.82 (0)
[54]
张融, 范文宏, 唐戈, 等. 重金属Cd和Zn对水生浮游动物大型蚤(Daphnia magna)联合毒性的研究初探[J]. 内蒙古大学学报(自然科学版), 2008, 39(6): 704-709. (0)
[55]
曾艳艺, 赖子尼, 杨婉玲, 等. 广东鲂幼鱼对铜、镉胁迫的氧化应激响应及其指示意义[J]. 生态环境学报, 2014, 23(12): 1972-1979. DOI:10.3969/j.issn.1674-5906.2014.12.013 (0)
[56]
EROGLU A, DOGAN Z, KANAK E G, et al. Effects of Heavy Metals (Cd, Cu, Cr, Pb, Zn) on Fish Glutathione Metabolism[J]. Environmental Science and Pollution Research International, 2015, 22(5): 3229-3237. DOI:10.1007/s11356-014-2972-y (0)
[57]
陈琳琳, 张高生, 陈静, 等. 汞、硒暴露对紫贻贝(Mytilus edulis)抗氧化酶系统的影响[J]. 生态毒理学报, 2011, 6(4): 383-388. (0)
[58]
YOU L P, NING X X, CHEN L L, et al. Expression Profiles of Two Small Heat Shock Proteins and Antioxidant Enzyme Activity in Mytilus galloprovincialis Exposed to Cadmium at Environmentally Relevant Concentrations[J]. Chinese Journal of Oceanology and Limnology, 2014, 32(2): 334-343. DOI:10.1007/s00343-014-3111-9 (0)
[59]
DABAS A, NAGPURE N S, MISHRA R M, et al. Cadmium Induced Lipid Peroxidation and Effects on Glutathione Dependent Enzymes in Tissues of Labeo rohita[J]. Proceedings of the National Academy of Science, India Section B:Biological Sciences, 2014, 84(4): 981-988. DOI:10.1007/s40011-013-0280-9 (0)
[60]
WU H, XUAN R J, LI Y J, et al. Effects of Cadmium Exposure on Digestive Enzymes, Antioxidant Enzymes and Lipid Peroxidation in the Freshwater Crab Sinopotamon henanense[J]. Environmental Science and Pollution Research, 2013, 20(6): 4085-4092. DOI:10.1007/s11356-012-1362-6 (0)
[61]
JIA X, ZHANG H, LIU X. Low Levels of Cadmium Exposure Induce DNA Damage and Oxidative Stress in the Liver of Oujiang Colored Common Carp Cyprinus carpio Var. Color[J]. Fish Physiology & Biochemistry, 2011, 37(1): 97-103. (0)
[62]
KUCUKBAY Z, YAZLAK H, SAHIN N, et al. Zinc Picolinate Supplementation Decreases Oxidative Stress in Rainbow Trout (Oncorhynchus mykiss)[J]. Journal of Vertebrate Paleontology, 2006, 30(3): 855-871. (0)
[63]
BANNI M, CHOUCHENE L, SAID K, et al. Mechanisms Underlying the Protective Effect of Zinc and Selenium Against Cadmium-Induced Oxidative Stress in Zebrafish Danio rerio[J]. Biometals, 2011, 24(6): 981-992. DOI:10.1007/s10534-011-9456-z (0)
[64]
YIN J, YANG J, ZHANG F, et al. Individual and Joint Toxic Effects of Cadmium Sulfate and α-Naphthoflavone on the Development of Zebrafish Embryo[J]. Journal of Zhejiang University Science B, 2014, 15(9): 766-775. DOI:10.1631/jzus.B1400091 (0)
[65]
SHAW J R, COLBOURNE J K, DAVEY J C, et al. Gene Response Profiles for Daphnia pulex Exposed to the Environmental Stressor Cadmium Reveals Novel Crustacean Metallothioneins[J]. BMC Genomics, 2007, 8(1): 477-497. DOI:10.1186/1471-2164-8-477 (0)
[66]
CHIARELLI R, MARTINO C, AGNELLO M, et al. Autophagy as a Defense Strategy Against Stress:Focus on Paracentrotus lividus Sea Urchin Embryos Exposed to Cadmium[J]. Cell Stress and Chaperones, 2016, 21(1): 19-27. DOI:10.1007/s12192-015-0639-3 (0)
[67]
BANNI M, CHOUCHENE L, SAID K, et al. Mechanisms Underlying the Protective Effect of Zinc and Selenium Against Cadmium-Induced Oxidative Stress in Zebrafish Danio rerio[J]. Biometals, 2011, 24(6): 981-992. DOI:10.1007/s10534-011-9456-z (0)
[68]
SASSI A, DARIASS M J, SAID K, et al. Cadmium Exposure Affects the Expression of Genes Involved in Skeletogenesis and Stress Response in Gilthead Sea Bream Larvae[J]. Fish Physiology and Biochemistry, 2013, 39(3): 649-659. DOI:10.1007/s10695-012-9727-9 (0)
[69]
WANG L, GALLAGHER E P. Role of Nrf2 Antioxidant Defense in Mitigating Cadmium-Induced Oxidative Stress in the Olfactory System of Zebrafish[J]. Toxicology & Applied Pharmacology, 2013, 266(2): 177-186. (0)
[70]
SOUID G, SOUAYED N, YAKTITI F, et al. Effect of Acute Cadmium Exposure on Metal Accumulation and Oxidative Stress Biomarkers of Sparus aurata[J]. Ecotoxicology & Environmental Safety, 2013, 89(11): 1-7. (0)
[71]
DHARA K, MUKHERJEE D, SAHA N C. Acute Toxicity of Cadmium to Benthic Oligochaete Worm, Branchiura sowerbyi Beddard, 1982 and Juvenile Catfish, Clarias batrachus Linnaeus, 1758[J]. Proceedings of the Zoological Society, 2015, 68(2): 116-119. DOI:10.1007/s12595-014-0106-7 (0)
[72]
史慧勤, 张利军, 苑晓燕, 等. 氯化镉暴露对斑马鱼幼鱼神经行为毒性作用[J]. 生态毒理学报, 2013, 8(3): 374-380. DOI:10.7524/AJE.1673-5897.20120406001 (0)
[73]
LUO Y, SHAN D, ZHONG H, et al. Subchronic Effects of Cadmium on the Gonads, Expressions of Steroid Hormones and Sex-Related Genes in Tilapia Oreochromis niloticus[J]. Ecotoxicology, 2015, 24(10): 2213-2223. DOI:10.1007/s10646-015-1542-5 (0)
[74]
刘宛, 李培军, 周启星, 等. 环境污染条件下生物体内DNA损伤的生物标记物研究进展[J]. 应用与环境生物学报, 2005, 11(2): 251-255. (0)
[75]
刘建博, 潘登, 江安娜, 等. 镉暴露对文蛤雄性生殖细胞的影响[J]. 环境科学学报, 2013, 33(7): 2036-2043. (0)
[76]
曹哲明, 杨健. 不同浓度Cd2+对鲤鱼基因组DNA的影响[J]. 应用与环境生物学报, 2010, 16(4): 457-461. (0)
[77]
陆慧贤, 徐永健. 镉胁迫下缢蛏(Sinonovacula constricta)抗氧化酶活性及DNA损伤的研究[J]. 海洋环境科学, 2011, 30(1): 96-101. (0)
[78]
王晶, 周启星, 张倩茹, 等. 沙蚕暴露于石油烃、Cu2+和Cd2+毒性效应及乙酰胆碱酯酶活性的响应[J]. 环境科学, 2007, 28(8): 1796-1801. (0)
[79]
MI S P, SHIN H S, LEE J, et al. Influence of Quercetin on the Physiological Response to Cadmium Stress in Olive Flounder, Paralichthys olivaceus:Effects on Hematological and Biochemical Parameters[J]. Molecular & Cellular Toxicology, 2010, 6(2): 151-159. (0)
[80]
WANG M H, WANG G Z. Biochemical Response of the Copepod Tigriopus japonicus Mori Experimentally Exposed to Cadmium[J]. Archives of Environmental Contamination & Toxicology, 2009, 57(4): 707-717. (0)
[81]
PRETTO A, LORO V L, MORSCH V M, et al. Acetylcholinesterase Activity, Lipid Peroxidation, and Bioaccumulation in Silver Catfish (Rhamdia quelen) Exposed to Cadmium[J]. Archives of Environmental Contamination & Toxicology, 2010, 58(4): 1008-1014. (0)
[82]
SILVA K T, PATHIRATNE A. In Vitro and in Vivo Effects of Cadmium on Cholinesterases in Nile tilapia Fingerlings Implications for Biomonitoring Aquatic Pollution[J]. Ecotoxicology, 2008, 17(8): 725-731. DOI:10.1007/s10646-008-0221-1 (0)
[83]
MARTINS C D M G, BIANCHINI A. Metallothionein-Like Proteins in the Blue Crab Callinectes sapidus:Effect of Water Salinity and Ions[J]. Comparative Biochemistry Physiology Part A:Molecular and Integrative Physiology, 2009, 152(3): 366-371. DOI:10.1016/j.cbpa.2008.11.005 (0)
[84]
TAPIERO H, TEW K D. Trace Elements in Human Physiology and Pathology:Zinc and Metallothioneins[J]. Biomedicine & Pharmacotherapy, 2003, 57(9): 399-411. (0)
[85]
苗毅, 李保庆, 刘会宁, 等. 人食管鳞状细胞癌细胞株MT-3 mRNA的表达[J]. 上海交通大学学报(医学版), 2009, 29(3): 319-322. (0)
[86]
CHEN X, LEI L, TIAN L T, et al. Bone Mineral Density and Polymorphisms in Metallothionein 1A and 2A in a Chinese Population Exposed to Cadmium[J]. Science of the Total Environment, 2012, 423(8): 12-17. (0)
[87]
GIACCONI R, MUTI E, MALAVOLTA M, et al. The +838 C/G MT2A Polymorphism, Metals, and the Inflammatory/Immune Response in Carotid Artery Stenosis in Elderly People[J]. Molecular Medicine, 2007, 13(7/8): 388-395. (0)
[88]
ZHOU Q, ZHANG J, FU J, et al. Biomonitoring:An Appealing Tool for Assessment of Metal Pollution in the Aquatic Ecosystem[J]. Analytica Chimica Acta, 2008, 606(2): 135-150. DOI:10.1016/j.aca.2007.11.018 (0)
[89]
FREISINGER E. The Metal-Thiolate Clusters of Plant Metallothioneins[J]. Chimia International Journal for Chemistry, 2010, 64(4): 217-224. DOI:10.2533/chimia.2010.217 (0)
[90]
SEVCIKOVA M, MODRA H, SLANINOVA A, et al. Metals as a Cause of Oxidative Stress in Fish:A Review[J]. Veterinární Medicína, 2011, 56(56): 537-546. (0)
[91]
FANG Y, YANG H, WANG T, et al. Metallothionein and Superoxide Dismutase Responses to Sublethal Cadmium Exposure in the Clam Mactra veneriformis[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2010, 151(3): 325-333. (0)
[92]
PARK K, KWAK I S. Assessment of Potential Biomarkers, Metallothionein and Vitellogenin mRNA Expressions in Various Chemically Exposed Benthic Chironomus riparius Larvae[J]. Ocean Science Journal, 2012, 47(4): 435-444. DOI:10.1007/s12601-012-0039-x (0)
[93]
GAO A B, WANG L, YUAN H. Expression of Metallothionein cDNA in a Freshwater Crab, Sinopotamon yangtsekiense, Exposed to Cadmium[J]. Experimental and Toxicologic Pathology, 2012, 64(3): 253-258. DOI:10.1016/j.etp.2010.08.017 (0)
[94]
RHEE J S, RAISUDDIN S, HWANG D S, et al. Differential Expression of Metallothionein (MT) Gene by Trace Metals and Endocrine-Disrupting Chemicals in the Hermaphroditic Mangrove Killifish, Kryptolebias marmoratus[J]. Ecotoxicology & Environmental Safety, 2009, 72(1): 206-212. (0)
[95]
LEE S, KIM C, KIM J, et al. Cloning Metallothionein Gene in Zacco platypus and Its Potential as an Exposure Biomarker Against Cadmium[J]. Environmental Monitoring & Assessment, 2015, 187(7): 447. (0)
[96]
霍礼辉, 陈彩芳, 林志华, 等. 镉诱导缢蛏(Sinonovacula constricta)体内金属硫蛋白基因变化规律研究[J]. 海洋与湖沼, 2012, 43(4): 723-728. DOI:10.11693/hyhz201204006006 (0)
[97]
BERNAL-HERNÁNDEZ Y Y, MEDINA-DÍAZ I M, ROBLEDO-MARENCO M L, et al. Acetylcholinesterase and Metallothionein in Oysters (Crassostrea corteziensis) From a Subtropical Mexican Pacific Estuary[J]. Ecotoxicology, 2010, 19(4): 819-825. DOI:10.1007/s10646-009-0459-2 (0)
[98]
CRETÌ P, TRINCHELLA F, SCUDIERO R. Heavy Metal Bioaccumulation and Metallothionein Content in Tissues of the Sea Bream Sparus aurata From Three Different Fish Farming Systems[J]. Environmental Monitoring & Assessment, 2010, 165(1/2/3/4): 321-329. (0)
[99]
张融, 范文宏, 唐戈, 等. 水体中重金属镉和锌对大型蚤联合毒性效应的初步研究[J]. 生态毒理学报, 2008, 3(3): 286-290. (0)
[100]
ZHANG J Q, WANG J, XIANG J H. A Cadmium Metallothionein Gene of Ridgetail White Prawn Exopalaemon carinicauda (Holthuis, 1950) and Its Expression[J]. Chinese Journal of Oceanology and Limnology, 2013, 31(6): 1204-1209. DOI:10.1007/s00343-013-3089-8 (0)
[101]
ZHANG Z, ZHANG Q. Molecular Cloning, Characterization and Expression of Heat Shock Protein 70 Gene From the Oyster Crassostrea Hongkongensis Responding to Thermal Stress and Exposure of Cu2+ and Malachite Green[J]. Gene, 2012, 497(2): 172-180. DOI:10.1016/j.gene.2012.01.058 (0)
[102]
YAMASHITA M, YABU T, OJIMA N. Stress Protein HSP70 in Fish[J]. Aquatic Bioscience Monograph, 2010, 3(4): 111-141. DOI:10.5047/absm.2010.00304.0111 (0)
[103]
肖成峰, 李芳泽, 贺涵贞, 等. HSP70家族基因多态性及其与疾病易感性之间的关系[J]. 国外医学遗传分册, 2003, 26(4): 205-209. (0)
[104]
简精. 热休克蛋白90α基因多态性与肺癌危险度的关联性研究[D]. 武汉: 华中科技大学, 2009.
JIAN Jing. Association Study on Polymorphisms of hsp90α Gene With Lung Cancer Risk[D]. Wuhan: Huazhong University of Science and Technology, 2009. (0)
[105]
张蕾. 栉孔扇贝、海湾扇贝热休克蛋白22基因的克隆和表达及其与栉孔扇贝抗热性状相关SNP位点的筛查[D]. 青岛: 中国海洋大学, 2009.
ZHANG Lei. Cloning and Expression Analysis of Scallop HSP22 Gene and Its Association With Heat Stress Resistance[D]. Qingdao: Ocean University of China, 2009. (0)
[106]
LIU H, CHEN H, JING J, et al. Cloning and Characterization of the HSP90 Beta Gene From Tanichthys Albonubes Lin (Cyprinidae) Effect of Copper and Cadmium Exposure[J]. Fish Physiology and Biochemistry, 2012, 38(3): 745-756. DOI:10.1007/s10695-011-9556-2 (0)
[107]
KAI J E, LEUTENEGGER C M, KOHLER H R, et al. Effects of Neurotoxic Insecticides on Heat-Shock Proteins and Cytokine Transcription in Chinook Salmon (Oncorhynchus tshawytscha)[J]. Ecotoxicology & Environmental Safety, 2009, 72(1): 182-190. (0)
[108]
RHEE J S, KIM R O, CHOI H G, et al. Molecular and Biochemical Modulation of Heat Shock Protein 20(Hsp20) Gene by Temperature Stress and Hydrogen Peroxide (H2O2) in the Monogonont Rotifer, Brachionus sp[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2011, 154(1): 19-27. (0)
[109]
JIANG X Y, GUAN X T, YAO L L, et al. Effects of Single and Joint Subacute Exposure of Copper and Cadmium on Heat Shock Proteins in Common Carp (Cyprinus carpio)[J]. Biological Trace Element Research, 2016, 169(2): 374-381. DOI:10.1007/s12011-015-0402-8 (0)
[110]
郭彪, 王芳, 侯纯强, 等. 温度突变对凡纳滨对虾己糖激酶和丙酮酸激酶活力以及热休克蛋白表达的影响[J]. 中国水产科学, 2008, 15(5): 885-889. (0)
[111]
曲凌云, 相建海, 孙修勤, 等. 温度刺激下栉孔扇贝不同组织热休克蛋白HSP70的表达研究[J]. 高技术通讯, 2005, 15(5): 97-100. (0)
[112]
GUO Z Y, JIAO C Z, XIAN J H. Heat Shock Protein 70 Expression in Shrimp Fenneropenaeus chinensis During Thermal and Immune-Challenged Stress[J]. Chinese Journal of Oceanology and Limnology, 2004, 22(4): 386-391. DOI:10.1007/BF02843633 (0)
[113]
宋文华, LUDEVESEG, 董云伟, 等. 高温对草鱼热休克蛋白表达的影响[J]. 海洋湖沼通报, 2012(1): 27-32. (0)
[114]
CHE S, SONG W Z, LIN X Z. Response of Heat-Shock Protein (HSP) Genes to Temperature and Salinity Stress in the Antarctic Psychrotrophic Bacterium Psychrobacter sp[J]. Current Microbiology, 2013, 67(5): 601-608. DOI:10.1007/s00284-013-0409-3 (0)
[115]
王鹏飞. 鳜热休克蛋白和低氧反应基因的克隆和表达研究[D]. 广州: 中山大学, 2014.
WANG Peng-fei. Cloning and Expression Analysis of Heat Shock Protein and Hypoxia Responsive Genes in Mandarin Fish(Siniperca chuatsi)[D]. Guangzhou: Sun Yat-sen University, 2014. (0)
[116]
王晓阳. 低氧胁迫下鲢微管蛋白相关基因及热休克蛋白70的表达分析[D]. 武汉: 华中农业大学, 2013.
WANG Xiao-yang. Effect of Hypoxic Stress on Microtubulin Gene and Heat Shock Protein 70 Expression in Hypophthalmichthys moritrix[D]. Wuhan: Huazhong Agricultural University, 2013. (0)
[117]
MOHINDRA V, TRIPATHI R K, YADAV P, et al. Hypoxia Induced Altered Expression of Heat Shock Protein Genes (Hsc71, Hsp90α and Hsp10) in Indian Catfish, Clarias batrachus (Linnaeus, 1758) Under Oxidative Stress[J]. Molecular Biology Reports, 2015, 42(7): 1197-1209. DOI:10.1007/s11033-015-3855-0 (0)
[118]
QIAN Z, LIU X, WANG L, et al. Gene Expression Profiles of Four Heatshock Proteins in Response to Different Acute Stresses in Shrimp, Litopenaeus vannamei[J]. Comparative Biochemistry & Physiolology Part C:Toxicology Pharmacology, 2012, 156(3/4): 211-220. (0)
[119]
SASSI A, DARIAS M J, SAID K, et al. Cadmium Exposure Affects the Expression of Genes Involved in Skeletogenesis and Stress Response in Gilthead Sea Bream Larvae[J]. Fish Physiology & Biochemistry, 2013, 39(3): 649-659. (0)
[120]
CONG M, LV J S, WU H F, et al. Effect of Cadmium on the Defense Response of Pacific Oyster Crassostrea gigas to Listonella anguillarum Challenge[J]. Chinese Journal of Oceanology and Limnology, 2013, 31(5): 1002-1009. DOI:10.1007/s00343-013-2280-2 (0)
[121]
刘迪秋, 葛锋, 陈朝银, 等. 重金属铜、镉对鲫肝脏基因表达的影响[J]. 中国水产科学, 2010, 17(6): 1243-1249. (0)
[122]
KWONG R W, ANDRÉS J A, NIYOGI S. Effects of Dietary Cadmium Exposure on Tissue-Specific Cadmium Accumulation, Iron Status and Expression of Iron-Handling and Stress Inducible Genes in Rainbow Trout:Influence of Elevated Dietary Iron[J]. Aquatic Toxicology, 2011, 102(1/2): 1-9. (0)
[123]
SOLÉ-ROVIRA M, FERNÁNDEZ-DÍAZ C, CAÑAVATE J P, et al. Effects on Metallothionein Levels and Other Stress Defences in Senegal Sole Larvae Exposed to Cadmium[J]. Bulletin of Environmental Contamination and Toxicology, 2005, 74(3): 597-603. DOI:10.1007/s00128-005-0625-z (0)