广东工业大学学报  2024, Vol. 41Issue (1): 11-18.  DOI: 10.12052/gdutxb.230111.
0

引用本文 

王振友, 黄亚婷. ECM重塑下肿瘤淋巴管生成模型的定性分析与数值模拟[J]. 广东工业大学学报, 2024, 41(1): 11-18. DOI: 10.12052/gdutxb.230111.
Wang Zhen-you, Huang Ya-ting. Qualitative Analysis and Numerical Simulation of Generative Model of Tumor Lymphatic Vessels Under ECM Remodeling[J]. JOURNAL OF GUANGDONG UNIVERSITY OF TECHNOLOGY, 2024, 41(1): 11-18. DOI: 10.12052/gdutxb.230111.

基金项目:

广东省自然科学基金资助项目(2023A1515012891)

作者简介:

王振友(1979–),男,教授,博士,主要研究方向为计算生物学、医学数据与统计分析计算等,E-mail:zywang@gdut.edu.cn

通信作者

黄亚婷(1998–),女,硕士研究生,主要研究方向为肿瘤数学,E-mail:2112114043@mail2.gdut.edu.cn

文章历史

收稿日期:2023-08-23
ECM重塑下肿瘤淋巴管生成模型的定性分析与数值模拟
王振友, 黄亚婷    
广东工业大学 数学与统计学院, 广东 广州 510520
摘要: 肿瘤转移是肿瘤发展过程中的重要环节,也是导致癌症恶化和治疗失败的主要原因之一。以肿瘤转移为背景,本文研究基于肿瘤与细胞外基质(Extracellular Matrix,ECM)相互作用的肿瘤淋巴管生成模型。首先用数学语言梳理肿瘤淋巴管生成的生物原理,其次做出假设,建立数学模型并进行定性分析。主要通过逼近方法、偏微分方程定性理论和Banach不动点定理证明模型局部解的存在唯一性,以及借助局部解的正则性估计和嵌入不等式证明模型整体解的存在唯一性。最后利用差分数值方法进行数值模拟来说明模型的可靠性与准确性。本文对深入理解肿瘤转移机制、指导癌症治疗以及推动相关研究具有重要意义。
关键词: 肿瘤淋巴管生成    细胞外基质    反应扩散    存在性    唯一性    
Qualitative Analysis and Numerical Simulation of Generative Model of Tumor Lymphatic Vessels Under ECM Remodeling
Wang Zhen-you, Huang Ya-ting    
School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou 510520, China
Abstract: Tumor metastasis is an important link in the process of tumor development, and it is also one of the main reasons for cancer deterioration and treatment failure. Taking tumor metastasis as the background, a study is conducted on the generative model of tumor lymphatics based on the interaction between tumor and extracellular matrix (ECM). First, mathematical language is used to sort out the biological principles of tumor lymphangiogenesis, and then assumptions made and mathematical models established and qualitative analysis carried out. The proof of the uniqueness of the existence of local solutions of the model is mainly carried out by means of approximation methods, the qualitative theory of partial differential equations and Banach's immovable point theorem, as well as the uniqueness of the existence of the overall solution of the model with the help of the regularity estimate of the local solution and the embedding inequality. Finally, the difference numerical method is used to carry out numerical simulation to illustrate the reliability and accuracy of the model. This research is of great significance for in-depth understanding the mechanism of tumor metastasis, guiding cancer treatment, and promoting related research.
Key words: tumor lymphangiogenesis    extracellular matrix(ECM)    reaction diffusion    existence    uniqueness    

肿瘤是一种严重危害人类生命健康的疾病,特别是恶性肿瘤。近年来,许多学者开始关注肿瘤生长、转移和微环境等相关问题,尤其是在了解肿瘤转移的机制并提供有效治疗策略方面,数学建模成为重要的研究手段之一。肿瘤转移是癌症发展过程中的关键环节,也是治疗失败和恶化的主要原因之一[1]

肿瘤淋巴管是肿瘤中新形成的血管(tumor angiogenesis),为肿瘤提供营养和氧气,被认为是与肿瘤转移和发展有关的重要因素之一[2]。淋巴管在正常情况下是通过一系列复杂的反应和信号来生成的,但在肿瘤中肿瘤细胞释放特殊的生长因子和化学信号物质,诱导周围的血管和淋巴管内皮细胞增殖和分化,形成新的淋巴管网络[3]。研究肿瘤淋巴管生成对于了解肿瘤的生长、转移和治疗具有重要意义。通过阻断肿瘤淋巴管生成,可以抑制肿瘤的生长和转移,并提高现有抗肿瘤治疗的效果。

在肿瘤淋巴管生成中,内皮细胞生长因子(Vascular Endothelial Growth Factor, VEGF)和细胞外基质(Extracellular Matrix,ECM)重塑是关键因素之一。VEGF在肿瘤发展中起着重要作用,高表达的VEGF与肿瘤的恶性程度和淋巴管生成密切相关[4]。ECM重塑则为肿瘤细胞的转移和淋巴管生成提供了条件[5]。VEGF作为一种主要的血管生成因子,已被广泛研究和证实其在血管新生和肿瘤转移中的作用。先前的研究表明,VEGF是肿瘤淋巴管生成的重要调节因子之一,实验证实干扰VEGF可以有效抑制肿瘤生长和淋巴管生成[6]。曹雪涛院士等[7]的研究综述中指出,肿瘤转移微环境对VEGF的产生和释放具有重要的调节作用,以及和ECM重塑等多方面的协同作用。此外,在过去的几十年里,前人研究中提到基质降解酶(Matrix Metalloproteinases,MMP)也是ECM重塑的一个关键成分[8]

以往的数学模型主要关注肿瘤生长规律,而忽略了基于肿瘤转移各组分间的相互作用[9-10]。为了更准确地描述肿瘤淋巴管生成过程,本文提出了一个考虑ECM重塑的模型,并且考虑了MMP对肿瘤淋巴管生成的影响。此外,VEGF作为关键的血管生成因子,在模型中起着重要作用。研究发现肿瘤转移微环境对VEGF的产生和释放具有调节作用,这进一步说明了VEGF在肿瘤淋巴管生成中的关键性。

1 数学模型及方程

上述考虑肿瘤转移过程中的ECM重塑作用,针对微环境中各种涉及肿瘤淋巴管生成的成分进行建模。至此,用流程图来描述本文提出的模型机制(见图1),由图1可知,内皮细胞的趋化性作用由内皮细胞生长因子VEGF引起。内皮细胞生长因子由肿瘤细胞和ECM分泌,MMP由肿瘤细胞和内皮细胞分泌,MMP的作用是降解ECM。内皮细胞和MMP的趋触性由ECM引起,内皮细胞和MMP会向ECM发生微小转移。

图 1 肿瘤淋巴管生成模型示意图 Figure 1 Schematic diagram of generative model of tumor lymphatic vessels

为了建立肿瘤转移微环境的模型,需要对肿瘤淋巴管生成的机制进行数学描述。本文总结在肿瘤淋巴管生成过程中的主要参与成分,并进行各个因素和变量的确定。根据上述肿瘤淋巴管生成机制的表述,这里设定相关成分:$m$为ECM的浓度,$n$为肿瘤细胞的浓度,$c$为内皮细胞的浓度,$s$为淋巴管内皮细胞生长因子VEGF的浓度,$q$为基质降解酶MMP的浓度。

不同因素之间存在相互作用和调节关系,共同影响和塑造了肿瘤淋巴管生成的环境。因此,本文可以考虑各成分之间作用关系的数学表达,以描述它们之间的相互作用和调节关系。

假设所有成分${X_i}\left( {i = 1, \cdots ,5} \right) $都以系数${\delta _{{X_i}}}$扩散或者转移,肿瘤细胞和内皮细胞将以${\mu _{{X_i}}}$的速率死亡或降解。本文进行如下考虑:如果${X_i} + {X_j} \to {X_m}$,那么${X_m}$形成的速率或${X_i}$${X_j}$丢失的速率是$\lambda {X_i}{X_j}$,式中$\lambda $为一个正参数。在${X_k}$被细胞因子${X_i}$激活的过程中,${X_i}$代表被${X_k}$结合和内化的分子,这种内化可能由于循环的速率有限而受到限制,本文用米氏方程表示激活速率$ \nabla \left(\dfrac{\theta \rho }{1+\rho } {X}_{i}\nabla {X}_{j}\right) $,式中$\theta ,\rho $为正参数。最后,$ \nabla ({X}_{i} $$\chi $$ \nabla {X}_{j}) $的表达式意味着${X_i}$通过趋化作用以趋化力$\chi $向趋化剂${X_j}$的梯度方向移动,式中$\chi $为一个正参数。物质${X_i}$的生长增殖速率本文用$\left( {1 - \dfrac{{{X_i}}}{{{X_H}}}} \right) {\lambda _{{X_i}}}{X_{i0}}$表示。肿瘤淋巴管生成阶段各成分之间发生的相互作用关系如图2所示。

图 2 关键因素及其相互关系示意图 Figure 2 Schematic diagram of key factors and their interrelationships

(1) MMP会降解ECM,则ECM的浓度方程为

$ \frac{{\partial m}}{{\partial t}} = - \sigma qm $ (1)

式中:t为时间,$\sigma $为MMP降解系数。

(2) 肿瘤细胞会发生增殖和扩散,还会分泌内皮细胞生长因子。因此肿瘤细胞的浓度方程为

$ \frac{{\partial n}}{{\partial t}} = {D_n}{\nabla ^2}n + \lambda {n_0}\left( {1 - \frac{n}{{{n_M}}}} \right) - {\mu _n}n $ (2)

式中:等号右边第1项为肿瘤细胞的扩散,${D_n}$为肿瘤扩散系数;右边第2项为肿瘤细胞的增殖,$\lambda $为肿瘤增殖系数,${n_0}$为肿瘤细胞初始浓度,${n_M}$为肿瘤细胞增殖上限;右边第3项为肿瘤细胞的死亡,${\mu _n}$为肿瘤细胞死亡系数。

(3) 内皮细胞会发生扩散,并且会对VEGF的刺激发生趋化运动,内皮细胞的受体会与VEGF相结合,另外内皮细胞还会向ECM转移,帮助形成淋巴管结构。内皮细胞的方程为

$ \frac{{\partial c}}{{\partial t}} = {D_c}{\nabla ^2}c - \nabla \left( {\frac{{\theta \rho }}{{1 + \rho }} c\nabla s} \right) - \nabla \left( {c{\chi _c}\nabla m} \right) - {\mu _c}c $ (3)

式中:等号右边第1项为肿瘤细胞的扩散,${D_c}$为内皮细胞扩散系数;右边第2项为内皮细胞受到VEGF的刺激发生的趋化运动项,$\theta ,\rho $为相关激活和趋化系数;右边第3项为内皮细胞向ECM的转移项,${\chi _c}$为内皮细胞转移系数;右边第4项为肿瘤细胞的死亡,${\mu _c}$为肿瘤细胞死亡系数。

(4) VEGF由肿瘤细胞和ECM分泌,会与内皮细胞相结合,并且还会发生扩散。VEGF的浓度方程为

$ \frac{{\partial s}}{{\partial t}} = {D_s}{\nabla ^2}s + {\alpha _s}n + {\beta _s}m - \varphi cs $ (4)

式中:等号右边第1项为肿瘤细胞的扩散,${D_s}$为VEGF扩散系数;右边第2、3项为肿瘤细胞和ECM分泌VEGF项,${\alpha _s},{\beta _s}$分别为肿瘤分泌VEGF系数和ECM分泌VEGF系数;右边第4项为内皮细胞吸收项,$\varphi $为内皮细胞与 VEGF作用的吸收系数。

(5) MMP由肿瘤细胞和内皮细胞分泌,并发生扩散,并且向基质转移降解ECM。MMP的浓度方程为

$ \frac{{\partial q}}{{\partial t}} = {D_q}{\nabla ^2}q - \nabla \left( {q{\chi _q}\nabla m} \right) + {\alpha _q}n + {\gamma _q}c $ (5)

式中:等号右边第1项为肿瘤细胞的扩散,${D_q}$为MMP扩散系数;右边第2项为MMP向ECM转移项,${\chi _q}$为MMP转移系数;右边第3、4项为分泌项,${\alpha _q},{\gamma _q}$分别为肿瘤分泌MMP系数和内皮细胞分泌MMP系数。

本文提出一个模型来研究肿瘤淋巴管生成中VEGF的影响。在建立模型之前,基于以下假设:

(a) 假设VEGF是肿瘤淋巴管生成的关键因素之一,其高表达与淋巴管生成的增加密切相关。VEGF的表达受到多个因素的调控,如肿瘤细胞内部信号通路的激活以及外部环境因素的影响,本模型仅考虑VEGF与内皮细胞受体结合后生成淋巴管结构的情况。

(b) 本文假设变量初值满足以下条件:对于$\forall \alpha \in \left( {0,1} \right) ,{m_0},{n_0},{c_0},{s_0},{q_0} \in {C^{2 + \alpha }}\left( {{{\overline \varOmega }_T}} \right) $

(c) 本文假设系统为封闭的,在边界上不存在物质的输入或输出,内外的物质无法通过边界交换。因此,在理论分析中本文假设各个变量${X_i}$边值满足以下条件:$ {\left. {\dfrac{{\partial {X_i}}}{{\partial x}}} \right|_{x = 0}} = {\left. {\dfrac{{\partial {X_i}}}{{\partial x}}} \right|_{x = L}} = 0 $

2 预备知识

下面将介绍一些需要用到的引理和记号。首先,本文引入一些记号:

① 记$ {\overline \varOmega _T} $${\varOmega _T}$的闭包,T为一个正实数,表示时间t的上限,其中${\varOmega _T}$表示为

$ {\varOmega _T} = \left\{ {\left( {x,t} \right) \left| {0 < x < L,0 < t < T} \right.} \right\},L > 0,T > 0$

② 定义$W_p^{2,1}\left( {{\varOmega _T}} \right) $

${ W_p^{2,1}\left( {{\varOmega _T}} \right) = \left\{ {u,v \in {L^p}\left( {{\varOmega _T}} \right) \left| {{u_t},{v_t},\nabla u,} \right.\nabla v,{\nabla ^2}u,{\nabla ^2}v \in {L^p}\left( {{\varOmega _T}} \right) } \right\}} $

$1 \leqslant p < \infty $,记空间$W_p^{2,1}\left( {{\varOmega _T}} \right) $中的函数$u\left( {x,t} \right) $的范数$ {\left\| u \right\|_{W_p^{2,1}\left( {{\varOmega _T}} \right) }} $如下:$ {\left\| u \right\|_{W_p^{2,1}\left( {{\varOmega _T}} \right) }} = $${\left\| {{D_x}u} \right\|_{{L^p}\left( {{\varOmega _T}} \right) }} + {\left\| {D_x^2u} \right\|_{{L^p}\left( {{\varOmega _T}} \right) }} + {\left\| {{D_t}u} \right\|_{{L^p}\left( {{\varOmega _T}} \right) }}$

③ 对于$p > \dfrac{5}{2}$,记${D_P}\left( {0,1} \right) $$t = 0$$W_p^{2,1}\left( {{\varOmega _T}} \right) $的迹空间,即$\varphi \in {D_P}\left( {0,1} \right) $当且仅当$\exists u \in W_p^{2,1}\left( {{\varOmega _T}} \right) $使得$ u\left(\cdot,0\right) =\phi $。定义${D_P}\left( {0,1} \right) $空间中的函数$\varphi \left( {x,t} \right) $的范数${\left\| \varphi \right\|_{{D_P}\left( {0,1} \right) }}$

$ {\left\| \varphi \right\|_{{D_P}\left( {0,1} \right) }}= \{{T}^{-\tfrac{1}{P}}{\Vert u\Vert }_{{W}_{p}^{2,1}\left({\varOmega }_{T}\right) }|u\in {W}_{p}^{2,1}\left({\varOmega }_{T}\right) ,u\left(\cdot,0\right) =\varphi \} $

由于$p > \dfrac{5}{2}$时,$W_p^{2,1}\left( {{\varOmega _T}} \right) $连续嵌入到$C\left( {{\varOmega _T}} \right) $,因此上面的定义是有意义的。而且,显然如果$\varphi \in {W^{2,p}}\left( {0,1} \right) $,则$\varphi \in {D_P}\left( {0,1} \right) $${\left\| \varphi \right\|_{{D_P}\left( {0,1} \right) }} \leqslant {\left\| \varphi \right\|_{{W^{2,p}}\left( {0,1} \right) }}$

④ 记$C_{x,t}^{k + \alpha ,\beta }\left( {{\varOmega _T}} \right) $,整数$k \geqslant 0$$\alpha ,\beta $满足$0 < \alpha < 1, 0 < \beta < 1$$C_{x,t}^{k + \alpha ,\beta }\left( {{\varOmega _T}} \right) $空间中的函数$u\left( {x,t} \right) $有如下范数:

$ {\left\| u \right\|_{C_{x,t}^{k + \alpha ,\beta }\left( {{\varOmega _T}} \right) }} = \sum\limits_{\left| l \right| = 0}^k {\left[ {\mathop {\sup }\limits_{{\varOmega _T}} \left| {D_x^lu} \right| + \left\langle {D_x^lu} \right\rangle _{x,{\varOmega _T}}^\alpha + \left\langle {D_x^lu} \right\rangle _{t,{\varOmega _T}}^\beta } \right]} $

式中:

$ \begin{split} &\left\langle u \right\rangle _{x,{\varOmega _T}}^\alpha = \mathop {\sup }\limits_{\left( {x,t} \right) ,\left( {y,t} \right) \in {\varOmega _T}} \dfrac{{\left| {u\left( {x,t} \right) - u\left( {y,t} \right) } \right|}}{{{{\left| {x - y} \right|}^\alpha }}}\\ &\left\langle u \right\rangle _{t,{\varOmega _T}}^\beta = \mathop {\sup }\limits_{\left( {x,t} \right) ,\left( {x,\tau } \right) \in {\varOmega _T}} \dfrac{{\left| {u\left( {x,t} \right) - u\left( {x,\tau } \right) } \right|}}{{{{\left| {t - \tau } \right|}^\beta }}} \end{split}$

下面介绍一些有用的引理。

引理1[11]  假设$D$是一个正常数,$a\left( {x,t} \right) ,$$b\left( {x,t} \right) $是区间${\varOmega _T}$连续有界函数,函数$f\left( {x,t} \right) $$ \in {L^p}\left( {{\varOmega _T}} \right) $$\varphi \in {C^1}\left[ {0,T} \right]$,且对$1 < p < \infty $${u_0}\left( x \right) \in {D_P}\left( {0,L} \right) $。令$Bu = \alpha \dfrac{{\partial u}}{{\partial n}} + \beta u$,其中(1) $ \alpha \text{=}0,\beta \text{=}1 $;(2) $ \alpha {=1},\beta \geqslant 0 $,初值问题

$\left\{ \begin{array}{l} \dfrac{{\partial u}}{{\partial t}} = D\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + a\left( {x,t} \right) \dfrac{{\partial u}}{{\partial x}} + b\left( {x,t} \right) u + f\left( {x,t} \right) \\ \left\{ {\left. {\left( {x,t} \right) } \right|0 < x < L,0 < t < T} \right\} \\ x = 0,L:Bu = \varphi ,0 < t < T \\ u\left( {x,0} \right) = {u_0}\left( x \right) ,0 \leqslant x \leqslant L \end{array} \right.$

存在唯一解$u\left( {x,t} \right) \in W_p^{2,1}\left( {{\varOmega _T}} \right) $且有以下估计

$ \begin{gathered} {\left\| u \right\|_{W_p^{2,1}\left( {{\varOmega _T}} \right) }} \leqslant \\ {C_P}\left( T \right) \left( {{{\left\| {{u_0}\left( x \right) } \right\|}_{{D_P}\left( {0,L} \right) }} + {{\left\| {\varphi \left( {x,t} \right) } \right\|}_{{W^{2,P}}\left( {0,T} \right) }} + {{\left\| f \right\|}_P}} \right) \\ \end{gathered} $

式中:${C_P}\left( T \right) $是一个依赖于$D,p,T,{\left\| a \right\|_\infty },{\left\| b \right\|_\infty }$的常数,且对任意的$T$有界集,${C_P}\left( T \right) $是有界的。

引理2[12-13]  设$ a\left( {x,t} \right) ,b\left( {x,t} \right) ,f\left( {x,t} \right) \in $ $ {C^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{\varOmega _T}} \right) $${u_0}\left( x \right) \in {C^{2 + \alpha }}\left[ {0,L} \right]$,则上述初值问题存在唯一解$u\left( {x,t} \right) \in {C^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) $,且

(1) 当$\alpha = 0,\;\beta = 1$时,有$ {\left\| u \right\|_{{C^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant $$ {\left\| u \right\|_{{C^{2 + \alpha }}\left[ {0,L} \right]}} + {C_\alpha }\left( T \right) \left( {{{\left\| \varphi \right\|}_{{C^{1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left[ {0,T} \right]}} + {{\left\| f \right\|}_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }}} \right) $

(2) 当$\alpha {{ = 1,}}\;\beta \geqslant 0$时,有$ {\left\| u \right\|_{{C^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant $$ {\left\| {{u_0}} \right\|_{{C^{2 + \alpha }}\left[ {0,L} \right]}} + {C_\alpha }\left( T \right) \left( {{{\left\| \varphi \right\|}_{{C^{1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left[ {0,T} \right]}} + {{\left\| f \right\|}_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }}} \right) $

这里的$ {C_\alpha }\left( T \right) $是仅依赖于$D,T,$${\left\| {a\left( {x,t} \right) } \right\|_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }}, {\left\| {b\left( {x,t} \right) } \right\|_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }}$的常数。

引理3[14-15] 设$u\left( {x,t} \right) \in {C^{1 + \alpha ,{{\left( {1{\text{ + }}\alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1{\text{ + }}\alpha } \right) } 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) $,则有

$ {\left\| {u\left( {x,t} \right) - u\left( {x,0} \right) } \right\|_{{C^{1 + \alpha ,{{\left( {1 + \alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1 + \alpha } \right) } 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant C\eta \left( T \right) {\left\| u \right\|_{{C^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} $

式中:$ \eta \left( T \right) = \max \left\{ {{T^{{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}},{T^{{{\left( {1 - \alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1 - \alpha } \right) } 2}} \right. } 2}}}} \right\} $

3 局部解的存在唯一性

$\forall T > 0$和一个正常数$M$,引入度量空间$\left( {{X_M},d} \right) $,对任意的$m\left( {x,t} \right) ,n\left( {x,t} \right) ,c\left( {x,t} \right) ,$$s\left( {x,t} \right) ,q\left( {x,t} \right) \in {X_M}\left( {0 < x < L,0 < t < T} \right) $满足条件:$m\left( {x,t} \right) ,n\left( {x,t} \right) , c\left( {x,t} \right) , s\left( {x,t} \right) ,q\left( {x,t} \right) $$ \in C_{x,t}^{1 + \alpha ,{{\left( {1{\text{ + }}\alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1{\text{ + }}\alpha } \right) } 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) $,并满足问题(1)~(5)且

$ \begin{split} & {\left\| {m\left( {x,t} \right) } \right\|_{C_{x,t}^{1 + \alpha ,{{\left( {1{\text{ + }}\alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1{\text{ + }}\alpha } \right) } 2}} \right. } 2}}\left( {{\varOmega _T}} \right) }} \leqslant M,{\left\| {n\left( {x,t} \right) } \right\|_{C_{x,t}^{1 + \alpha ,{{\left( {1{\text{ + }}\alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1{\text{ + }}\alpha } \right) } 2}} \right. } 2}}\left( {{\varOmega _T}} \right) }} \leqslant M \\ & {\left\| {c\left( {x,t} \right) } \right\|_{C_{x,t}^{1 + \alpha ,{{\left( {1{\text{ + }}\alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1{\text{ + }}\alpha } \right) } 2}} \right. } 2}}\left( {{\varOmega _T}} \right) }} \leqslant M,{\left\| {s\left( {x,t} \right) } \right\|_{C_{x,t}^{1 + \alpha ,{{\left( {1{\text{ + }}\alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1{\text{ + }}\alpha } \right) } 2}} \right. } 2}}\left( {{\varOmega _T}} \right) }} \leqslant M \\ &{\left\| {q\left( {x,t} \right) } \right\|_{C_{x,t}^{1 + \alpha ,{{\left( {1{\text{ + }}\alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1{\text{ + }}\alpha } \right) } 2}} \right. } 2}}\left( {{\varOmega _T}} \right) }} \leqslant M \end{split} $

$u = \left( {m,n,c,s,q} \right) ,\widetilde u = \left( {\widetilde m,\widetilde n,\widetilde c,\widetilde s,\widetilde q} \right) $,定义${X_M}$中的度量为$d( {u,\widetilde u} ) = {\| {u - \widetilde u} \|_{{C^{1 + \alpha ,{{\left( {1{\text{ + }}\alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1{\text{ + }}\alpha } \right) } 2}} \right. } 2}}}\left( {{\varOmega _T}} \right) }}$

显然度量空间$\left( {{X_M},d} \right) $是一个完备的度量空间,对于$\forall u \in {X_M}$,定义一个映射$u \to \widetilde u$,式中$\widetilde u = F\left( u \right) $满足如下问题:

$ \frac{{\partial \widetilde m}}{{\partial t}} = - \sigma q\widetilde m $ (6)
$ \frac{{\partial \widetilde n}}{{\partial t}} = {D_n}{\nabla ^2}\widetilde n + \lambda {n_0}\left( {1 - \frac{{\widetilde n}}{{{n_M}}}} \right) - {\mu _n}\widetilde n $ (7)
$ \frac{{\partial \widetilde c}}{{\partial t}} = {D_c}{\nabla ^2}\widetilde c - \nabla \left( {\frac{{\theta \rho }}{{1 + \rho }} \widetilde c\nabla s} \right) - \nabla \left( {\widetilde c{\chi _c}\nabla m} \right) - {\mu _c}\widetilde c $ (8)
$ \frac{{\partial \widetilde s}}{{\partial t}} = {D_s}{\nabla ^2}\widetilde s + {\alpha _s}n + {\beta _s}m - \varphi c\widetilde s $ (9)
$ \frac{{\partial \widetilde q}}{{\partial t}} = {D_q}{\nabla ^2}\widetilde q - \nabla \left( {\widetilde q{\chi _q}\nabla m} \right) + {\alpha _q}n + {\gamma _q}c $ (10)

(1) 下面先证明$F$映射到${X_M}$自身。

(a) 由引理2可知,问题(1) 存在唯一解$\widetilde m\left( {x,t} \right) \in C_{x,t}^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{\varOmega _T}} \right) $且满足

$ {\| {\widetilde m} \|_{{C^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant {\| {\widetilde m} \|_{{C^{2 + \alpha }}\left[ {0,L} \right]}} = {C_1}\left( {T,M} \right) $

对于问题(1)再由引理3可得

$ \begin{split} {\| {\widetilde m} \|_{C_{x,t}^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant &\; {\left\| {{m_0}} \right\|_{{C^{1 + \alpha }}\left[ {0,L} \right]}} + {\| {\widetilde m - {m_0}} \|_{C_{x,t}^{2 + \alpha ,{{\left( {1 + \alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1 + \alpha } \right) } 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant \\ &{\left\| {{m_0}} \right\|_{{C^{1 + \alpha }}\left[ {0,L} \right]}} + C\eta \left( T \right) {\| {\widetilde m} \|_{C_{x,t}^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant \\ & {\left\| {{m_0}} \right\|_{{C^{1 + \alpha }}\left[ {0,L} \right]}}{\text{ + }}C\eta \left( T \right) {C_1}\left( {T,M} \right) \end{split} $

同理,对于问题(2) 、(4) 分别有类似上述结论成立,具体为

$ \begin{split} & {\| {\widetilde n} \|_{C_{x,t}^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant {\left\| {{n_0}} \right\|_{{C^{1 + \alpha }}\left[ {0,L} \right]}}{\text{ + }}C\eta \left( T \right) {C_2}\left( {T,M} \right) \\ & {\| {\widetilde s} \|_{C_{x,t}^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant {\left\| {{s_0}} \right\|_{{C^{1 + \alpha }}\left[ {0,L} \right]}}{\text{ + }}C\eta \left( T \right) {C_4}\left( {T,M} \right) \end{split} $

(b) 考虑问题(3) ,为方便记

$\begin{split} & {a_c}\left( {x,t} \right) = - \frac{{\theta \rho }}{{1 + \rho }}\nabla s - {\chi _c}\nabla m \\ & {b_c}\left( {x,t} \right) = - \frac{{\theta \rho }}{{1 + \rho }}{\nabla ^2}s - {\chi _c}{\nabla ^2}m \\ & {h_c}\left( {x,t} \right) = - {\mu _c}c \end{split} $

由(a)的结论可知

$ {\left\| {{a_c}\left( {x,t} \right) } \right\|_{C_{x,t}^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} + {\left\| {{b_c}\left( {x,t} \right) } \right\|_{C_{x,t}^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant C\left( T \right) M $

计算可知问题(3)可化为

$ \frac{{\partial \widetilde c}}{{\partial t}} = {D_c}{\nabla ^2}\widetilde c + {a_c}\left( {x,t} \right) \nabla \widetilde c + {b_c}\left( {x,t} \right) \widetilde c + {h_c}\left( {x,t} \right) $

再由引理2可知,问题(3) 存在唯一解$\widetilde c\left( {x,t} \right) \in C_{x,t}^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{\varOmega _T}} \right) $,且满足$ {\| {\widetilde c} \|_{{C^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant $$ {\| {\widetilde c} \|_{{C^{2 + \alpha }}\left[ {0,L} \right]}} +{C_\alpha }\left( T \right) {\left\| {h_c} \right\|_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} = {C_3}\left( {T,M} \right) $

结合引理3可得

$ {\| {\widetilde c} \|_{C_{x,t}^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant {\left\| {{c_0}} \right\|_{{C^{1 + \alpha }}\left[ {0,L} \right]}}{\text{ + }}C\eta \left( T \right) {C_3}\left( {T,M} \right) $

类似地可以得到问题(5)结论为

$ {\| {\widetilde q} \|_{C_{x,t}^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant {\left\| {{q_0}} \right\|_{{C^{1 + \alpha }}\left[ {0,L} \right]}}{\text{ + }}C\eta \left( T \right) {C_5}\left( {T,M} \right) $

综上所述,当$T$足够小时,$\mathop {\lim }\limits_{T \to 0} \eta \left( T \right) = 0$,取

$ M = \max \left\{ \begin{array}{l} {\left\| {{m_0}} \right\|_{{C^{1 + \alpha }}\left[ {0,L} \right]}},{\left\| {{n_0}} \right\|_{{C^{1 + \alpha }}\left[ {0,L} \right]}},{\left\| {{c_0}} \right\|_{{C^{1 + \alpha }}\left[ {0,L} \right]}}, \\ {\left\| {{s_0}} \right\|_{{C^{1 + \alpha }}\left[ {0,L} \right]}},{\left\| {{q_0}} \right\|_{{C^{1 + \alpha }}\left[ {0,L} \right]}} \end{array} \right\} $

$T > 0$充分小时,$\widetilde u \in {X_M}$,即映射$F$${X_M}$映射到它自身。

(2) 下面证明映射$F$是压缩映射。对任意的${u_1}, {u_2} \in {X_M}$,假设$ {\widetilde u_1} = F{u_1},{\widetilde u_2} = F{u_2}, $${\widetilde u^*} = {\widetilde u_1} - {\widetilde u_2},\delta = \left\| {u_1} - {u_2} \right\|_{{C^{1 + \alpha ,{{\left( {1 + \alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1 + \alpha } \right) } 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }$

$ {\widetilde m^*} = {\widetilde m_1}^* - {\widetilde m_2}^* $,则有

$ \frac{{\partial {{\widetilde m}^*}}}{{\partial t}} = - \sigma q{\widetilde m^*} + {h_m}\left( {x,t} \right) $

式中:$ {h_m}\left( {x,t} \right) = - \sigma \left( {{q_1} - {q_2}} \right) {\widetilde m_2} $,则由引理2得

$ \begin{split} & {\| {{{\widetilde m}_1} - {{\widetilde m}_2}} \|_{{C^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant\\ & {C_\alpha }\left( T \right) {\left\| {{h_m}} \right\|_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant\\ & {C_\alpha }\left( T \right) ( {\sigma {{\left\| {{q_1} - {q_2}} \right\|}_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }}{{\| {{{\widetilde m}_2}} \|}_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }}} ) \leqslant\\ & C\left( T \right) M \end{split} $ (11)

$ {\widetilde n^*} = {\widetilde n_1}^* - {\widetilde n_2}^* $,则有

$ \frac{{\partial {{\widetilde n}^*}}}{{\partial t}} = {D_n}{\nabla ^2}{\widetilde n^*} - \left( {\frac{{\lambda {n_0}}}{{{n_M}}} + {\mu _n}} \right) {\widetilde n^*} + {h_n}\left( {x,t} \right) $

式中:$ {h_n}\left( {x,t} \right) = - \dfrac{{\lambda {n_0}}}{{{n_M}}}{\widetilde n_2} - {\mu _n}{\widetilde n_2} $,则由引理2得

$ \begin{split} & {\| {{{\widetilde n}_1} - {{\widetilde n}_2}} \|_{{C^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant\\ & {C_\alpha }\left( T \right) {\left\| {{h_n}} \right\|_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant\\ & {C_\alpha }\left( T \right) \left( {\frac{{\lambda {n_0}}}{{{n_M}}}{{\| {{{\widetilde n}_2}} \|}_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} + {\mu _n}{{\| {{{\widetilde n}_2}} \|}_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }}} \right) \leqslant\\ & C\left( T \right) M \end{split} $ (12)

$ {\widetilde c^*} = {\widetilde c_1}^* - {\widetilde c_2}^* $,则有

$ \frac{{\partial {{\widetilde c}^*}}}{{\partial t}} = {D_c}{\nabla ^2}{\widetilde c^*} + {a_c}\left( {x,t} \right) \nabla {\widetilde c^*} + {b_c}\left( {x,t} \right) {\widetilde c^*} + {h_c^\prime} \left( {x,t} \right) $

式中:

$\begin{split} & {a_c}\left( {x,t} \right) = - \frac{{\theta \rho }}{{1 + \rho }}\nabla s - {\chi _c}\nabla m \\ & {b_c}\left( {x,t} \right) = - \frac{{\theta \rho }}{{1 + \rho }}{\nabla ^2}s - {\chi _c}{\nabla ^2}m \\ & {h_c^\prime} \left( {x,t} \right) = - \frac{{\theta \rho }}{{1 + \rho }}\nabla \left( {{s_1} - {s_2}} \right) - {\chi _c}\nabla \left( {{m_1} - {m_2}} \right) - \\ &\qquad\qquad \frac{{\theta \rho }}{{1 + \rho }}{\nabla ^2}\left( {{s_1} - {s_2}} \right) - {\chi _c}{\nabla ^2}\left( {{m_1} - {m_2}} \right) - {\mu _c}{{\widetilde c}_2} \end{split} $

则由引理2得

$ \begin{split} {\left\| {{{\widetilde c}_1} - {{\widetilde c}_2}} \right\|_{{C^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant &\;{C_\alpha }\left( T \right) {\left\| {{h_c^\prime }} \right\|_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant \\ & C\left( T \right) M \end{split} $ (13)

$ {\widetilde s^*} = {\widetilde s_1}^* - {\widetilde s_2}^* $,则有

$ \frac{{\partial {{\widetilde s}^*}}}{{\partial t}} = {D_s}{\nabla ^2}{\widetilde s^*} - \varphi c{\widetilde s^*} + {h_s^\prime} \left( {x,t} \right) $

式中:$ {h_s^\prime} \left( {x,t} \right) = - \varphi \left( {{c_1} - {c_2}} \right) {\widetilde s_2} + {\alpha _s}\left( {{n_1} - {n_2}} \right) $$ + {\beta _s}\left( {{m_1} - {m_2}} \right) $。由引理2得

$\begin{split} & {\| {{{\widetilde s}_1} - {{\widetilde s}_2}} \|_{{C^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant\\ & {C_\alpha }\left( T \right) {\left\| {{h_s^\prime}} \right\|_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant\\ & {C_\alpha }\left( T \right) (\varphi {\left\| {{c_1} - {c_2}} \right\|_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }}{\| {{{\widetilde s}_2}} \|_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} - \\ & {\alpha _s}{\left\| {{n_1} - {n_2}} \right\|_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} - {\beta _s}{\left\| {{m_1} - {m_2}} \right\|_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }}) \leqslant\\ & C\left( T \right) M \end{split}$ (14)

$ {\widetilde q^*} = {\widetilde q_1}^* - {\widetilde q_2}^* $,则有

$ \frac{{\partial {{\widetilde q}^*}}}{{\partial t}} = {D_q}{\nabla ^2}{\widetilde q^*} + {a_q}\left( {x,t} \right) \nabla {\widetilde q^*} + {b_q}\left( {x,t} \right) {\widetilde q^*} + {h_q^\prime} \left( {x,t} \right) $

式中:

$ \begin{split} & {a_q}\left( {x,t} \right) = - {\chi _q}\nabla m,{b_q}\left( {x,t} \right) = - {\chi _q}{\nabla ^2}m, \\ & {h_q^\prime} \left( {x,t} \right) = - {\chi _q}\nabla \left( {{m_1} - {m_2}} \right) - {\chi _q}{\nabla ^2}\left( {{m_1} - {m_2}} \right) + \\ &\qquad\qquad {\alpha _q}\left( {{n_1} - {n_2}} \right) + {\gamma _q}\left( {{c_1} - {c_2}} \right) \end{split}$

则由引理2得

$ \begin{split} {\| {{{\widetilde q}_1} - {{\widetilde q}_2}} \|_{{C^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant &\;{C_\alpha }\left( T \right) {\| {{h_q^\prime }} \|_{{C^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant\\ & C\left( T \right) M \end{split} $ (15)

综合(11)-(15),再由引理3可得

$\begin{split} {\| {{{\widetilde m}_1} - {{\widetilde m}_2}} \|_{{C^{2 + \alpha ,{{\left( {1{\text{ + }}\alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1{\text{ + }}\alpha } \right) } 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant &\;C\eta (T) {\| {{{\widetilde m}_1} - {{\widetilde m}_2}} \|_{{C^{2 + \alpha ,{{1 + \alpha } \mathord{\left/ {\vphantom {{1 + \alpha } 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant\\ & \eta \left( T \right) C\left( T \right) \delta \end{split} $

式中:$\eta \left( T \right) = \max \left\{ {{T^{{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}},{T^{{{\left( {1 + \alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1 + \alpha } \right) } 2}} \right. } 2}}}} \right\}$,同理

$\begin{split} & {\| {{{\widetilde n}_1} - {{\widetilde n}_2}} \|_{{C^{2 + \alpha ,{{\left( {1{\text{ + }}\alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1{\text{ + }}\alpha } \right) } 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant \eta \left( T \right) C\left( T \right) \delta \\ & {\| {{{\widetilde c}_1} - {{\widetilde c}_2}} \|_{{C^{2 + \alpha ,{{\left( {1{\text{ + }}\alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1{\text{ + }}\alpha } \right) } 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant \eta \left( T \right) C\left( T \right) \delta \\ & {\| {{{\widetilde s}_1} - {{\widetilde s}_2}} \|_{{C^{2 + \alpha ,{{\left( {1{\text{ + }}\alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1{\text{ + }}\alpha } \right) } 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant \eta \left( T \right) C\left( T \right) \delta \\ & {\| {{{\widetilde q}_1} - {{\widetilde q}_2}} \|_{{C^{2 + \alpha ,{{\left( {1{\text{ + }}\alpha } \right) } \mathord{\left/ {\vphantom {{\left( {1{\text{ + }}\alpha } \right) } 2}} \right. } 2}}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant \eta \left( T \right) C\left( T \right) \delta \end{split} $

$T > 0$充分小,使得$0 < \eta \left( T \right) C\left( T \right) < 1$,此时$F$${X_M}$上的压缩映射。由Banach不动点定理可知,当$T > 0$充分小时,$F$存在唯一的不动点$ \left( {m,n,c,s,q} \right) $,是问题(6)~(10)在区域${\varOmega _T}$中的唯一解。由证明过程可知$T$依赖于初值$m\left( {x,0} \right) ,n\left( {x,0} \right) ,c\left( {x,0} \right) ,s\left( {x,0} \right) ,q\left( {x,0} \right) $在空间${C^{2 + \alpha }}\left( {0,L} \right) $中的范数的上确界。上述结果可以整理为定理1。

定理1 存在$T > 0$,对所有$t \in \left[ {0,T} \right]$,原问题(1)~(5)的逼近问题(6)~(10)在区域${\varOmega _T}$内存在唯一的解 ,其中$T$依赖于$m\left( {x,0} \right) ,n\left( {x,0} \right) ,c\left( {x,0} \right) ,s\left( {x,0} \right) ,q\left( {x,0} \right) $${C^{2 + \alpha }}\left( {0,L} \right) $中的范数的上确界。

4 整体解的存在唯一性

引理4 对式(1)~(5)有结论:$ 0 \leqslant n \leqslant {n_M} $,以及$ m,c,s, q \geqslant 0 $成立。

证明 对式(2)应用极值原理可得

$ 0 \leqslant n \leqslant C\sup \left( {{n_0}} \right) \equiv {n_M} $

同理对于问题(1)、(3)、(4)、(5)中的变量$X$,应用极值原理可得

$ 0 \leqslant X \leqslant C\sup \left( X \right) \equiv {X_M} $

则有$ m,n,c,s,q \geqslant 0 $成立。引理4得证。

引理5 对任意$1 < k < \infty $,存在一个依赖于$T$的常数${C_k}\left( T \right) $满足

$\begin{split} &{\Vert m\Vert }_{{L}^{k}\left({\varOmega }_{T}\right) }\leqslant {C}_{k}\left(T\right) ,{\Vert n\Vert }_{{L}^{k}\left({\varOmega }_{T}\right) }\leqslant {C}_{k}\left(T\right) \\ &{\Vert c\Vert }_{{L}^{k}\left({\varOmega }_{T}\right) }\leqslant {C}_{k}\left(T\right) ,{\Vert s\Vert }_{{L}^{k}\left({\varOmega }_{T}\right) }\leqslant {C}_{k}\left(T\right) \\ &{\Vert q\Vert }_{{L}^{k}\left({\varOmega }_{T}\right) }\leqslant {C}_{k}\left(T\right) \end{split} $

证明 对式(1)和(2)应用极值原理可得$0 \leqslant m \leqslant C\sup \left( {{m_0}} \right) ,0 \leqslant n \leqslant C\sup \left( {{n_0}} \right) $,则有

$ {\left\| m \right\|_{{L^k}\left( {{\varOmega _T}} \right) }} \leqslant {C_k}\left( T \right) ,{\left\| n \right\|_{{L^k}\left( {{\varOmega _T}} \right) }} \leqslant {C_k}\left( T \right) $ (16)

在方程(4)两边同时乘以${s^k}$并且在${\varOmega _T}$上积分可得

$\begin{split} & \frac{1}{{k + 1}}\int_0^L {\frac{\partial }{{\partial t}}} \int_0^t {{s^{k + 1}}} {\rm{d}}x{\rm{d}}t + k{D_s}\int_0^t {\int_0^L {{{\left| {\nabla s} \right|}^2}} } {s^{k - 1}}{\rm{d}}x{\rm{d}}t \leqslant\\ & {\alpha _s}\int_0^t {\int_0^L n } {s^k}{\rm{d}}x{\rm{d}}t + {\beta _s}\int_0^t {\int_0^L m } {s^k}{\rm{d}}x{\rm{d}}t \leqslant\\ & {\alpha _s}{\left( {\int_0^t {\int_0^L {{s^{k + 1}}} } {\rm{d}}x{\rm{d}}t} \right) ^{\tfrac{k}{{k + 1}}}}{\left( {\int_0^t {\int_0^L {{n^{k + 1}}} } {\rm{d}}x{\rm{d}}t} \right) ^{\tfrac{1}{{k + 1}}}} + \\ & {\beta _s}{\left( {\int_0^t {\int_0^L {{s^{k + 1}}} } {\rm{d}}x{\rm{d}}t} \right) ^{\tfrac{k}{{k + 1}}}}{\left( {\int_0^t {\int_0^L {{m^{k + 1}}} } {\rm{d}}x{\rm{d}}t} \right) ^{\tfrac{1}{{k + 1}}}} \end{split} $ (17)

$ {\phi _s}\left( t \right) = \displaystyle\int_0^t {\displaystyle\int_0^L {{s^{k + 1}}} {\rm{d}}x{\rm{d}}t} $代入式(17),由式(16)可得$\dfrac{{{\rm{d}}{\phi _s}}}{{{\rm{d}}t}} \leqslant C{\phi _s}^{\tfrac{k}{{k + 1}}} \leqslant {C_k}\left( {{\phi _s} + 1} \right) $

由Gronwall不等式可得

$ {\phi _s} \leqslant {C_k}(T) $ (18)

因此可得${\left\| s \right\|_{{L^{k + 1}}\left( {{\varOmega _T}} \right) }} \leqslant {C_k}\left( T \right) $

把式(3)和式(5)相加,再两边同时乘以${\left( {c + q} \right) ^k}$并且在${\varOmega _T}$上积分可得

$\begin{split} & \frac{1}{{k + 1}}\int_0^L {\frac{\partial }{{\partial t}}} \int_0^t {{{\left( {c + q} \right) }^{k + 1}}} {\rm{d}}x{\rm{d}}t + \\ & k{D_{cq}}\int_0^t {\int_0^L {{{\left| {\nabla \left( {c + q} \right) } \right|}^2}} } {\left( {c + q} \right) ^{k - 1}}{\rm{d}}x{\rm{d}}t \leqslant \\ & {\alpha _q}\int_0^t {\int_0^L n } {\left( {c + q} \right) ^k}{\rm{d}}x{\rm{d}}t \leqslant \\ &{\alpha _q}{\left( {\int_0^t {\int_0^L {{{\left( {c + q} \right) }^{k + 1}}} } {\rm{d}}x{\rm{d}}t} \right) ^{\frac{k}{{k + 1}}}}{\left( {\int_0^t {\int_0^L {{n^{k + 1}}} } {\rm{d}}x{\rm{d}}t} \right) ^{\tfrac{1}{{k + 1}}}} \end{split} $ (19)

式中:$ {D_{cq}} = \max \left( {{D_c},{D_q}} \right) $,记

$ {\phi _{cq}}\left( t \right) = \int_0^t {\int_0^L {{{\left( {c + q} \right) }^{k + 1}}} {\rm{d}}x{\rm{d}}t} $

代入式(19),由式(16)可得

$ \frac{{{\rm{d}}{\phi _{cq}}}}{{{\rm{d}}t}} \leqslant C{\phi _{cq}}^{\tfrac{k}{{k + 1}}} \leqslant {C_k}\left( {{\phi _{cq}} + 1} \right) $

${\left\| {\left( {c + q} \right) } \right\|_{{L^{k + 1}}\left( {{\varOmega _T}} \right) }} \leqslant {C_k}\left( T \right) $,又$c \geqslant 0,q \geqslant 0$,则

$ {\left\| c \right\|_{{L^{k + 1}}\left( {{\varOmega _T}} \right) }} \leqslant {C_k}\left( T \right) ,{\left\| q \right\|_{{L^{k + 1}}\left( {{\varOmega _T}} \right) }} \leqslant {C_k}\left( T \right) $ (20)

引理5得证。

引理6 对任意$1 < p < \infty $,存在一个依赖于$T$的常数${C_p}\left( T \right) $满足

$ \begin{split} &{\Vert m\Vert }_{{W}_{p}^{2,1}\left({\varOmega }_{T}\right) }\leqslant {C}_{p}\left(T\right) ,{\Vert n\Vert }_{{W}_{p}^{2,1}\left({\varOmega }_{T}\right) }\leqslant {C}_{p}\left(T\right) \\ &{\Vert c\Vert }_{{W}_{p}^{2,1}\left({\varOmega }_{T}\right) }\leqslant {C}_{p}\left(T\right) ,{\Vert s\Vert }_{{W}_{p}^{2,1}\left({\varOmega }_{T}\right) }\leqslant {C}_{p}\left(T\right) \\ &{\Vert q\Vert }_{{W}_{p}^{2,1}\left({\varOmega }_{T}\right) }\leqslant {C}_{p}\left(T\right) \end{split} $

证明 对于问题(1)、(2)、(4)应用引理1得

$ {\left\| m \right\|_{W_p^{2,1}\left( {{\varOmega _T}} \right) }} \leqslant {C_p}\left( T \right) ,{\left\| n \right\|_{W_p^{2,1}\left( {{\varOmega _T}} \right) }} \leqslant {C_p}\left( T \right) ,{\left\| s \right\|_{W_p^{2,1}\left( {{\varOmega _T}} \right) }} \leqslant {C_p}\left( T \right) , $

又由Sobolev嵌入定理[16]

$ W_p^{2,1}\left( {{\varOmega _T}} \right) \subset \subset C_{x,t}^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}( {{{\overline \varOmega }_T}} ) ,\alpha = 2 - \frac{5}{p}\left( {p > \frac{5}{2}} \right) $

可得

$\begin{split} & {\left\| m \right\|_{C_{x,t}^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant {C_p}\left( T \right) ,{\left\| n \right\|_{C_{x,t}^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant {C_p}\left( T \right) \\ & {\left\| s \right\|_{C_{x,t}^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant {C_p}\left( T \right) \end{split}$

问题(3)可以写成为

$ \frac{{\partial c}}{{\partial t}} = {D_c}{\nabla ^2}c + {a_c}\left( {x,t} \right) \nabla c + {b_c}\left( {x,t} \right) c + {h_c}\left( {x,t} \right) $

式中:

$ \begin{split} & {a_c}\left( {x,t} \right) = - \frac{{\theta \rho }}{{1 + \rho }}\nabla s - {\chi _c}\nabla m \\ & {b_c}\left( {x,t} \right) = - \frac{{\theta \rho }}{{1 + \rho }}{\nabla ^2}s - {\chi _c}{\nabla ^2}m \\ & {h_c}\left( {x,t} \right) = - {\mu _c}c \end{split}$

同理,问题(5)可以写成为

$ \frac{{\partial q}}{{\partial t}} = {D_q}{\nabla ^2}q + {a_q}\left( {x,t} \right) \nabla q + {b_q}\left( {x,t} \right) q + {h_q}\left( {x,t} \right) $

式中:

$\begin{split} & {a_q}\left( {x,t} \right) = - {\chi _q}\nabla m,{b_q}\left( {x,t} \right) = - {\chi _q}{\nabla ^2}m, \\ & {h_q}\left( {x,t} \right) = {\alpha _q}n + {\gamma _q}c \end{split}$

由引理5可知

$ {b_c}(x,t) + {h_c}(x,t) ,{b_q}(x,t) + {h_q}(x,t) \in {L^p}\left( {{\varOmega _T}} \right) $

$ {a_c}(x,t) ,{a_q}(x,t) $是连续有界函数,由引理1可得${\left\| c \right\|_{W_p^{2,1}\left( {{\varOmega _T}} \right) }} \leqslant {C_p}\left( T \right) ,{\left\| q \right\|_{W_p^{2,1}\left( {{\varOmega _T}} \right) }} \leqslant {C_p}\left( T \right) $,引理6得证。

引理7 存在一个依赖于$T$的常数$C\left( T \right) $,满足$ {\left\| u \right\|_{C_{x,t}^{2 + \alpha ,1 + {\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant C\left( T \right) $

证明 由引理6和Sobolev嵌入定理[16]

$ W_p^{2,1}\left( {{\varOmega _T}} \right) \subset \subset C_{x,t}^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) ,\alpha = 2 - \frac{5}{p}\left( {p > \frac{5}{2}} \right) $

则有${\left\| u \right\|_{C_{x,t}^{\alpha ,{\alpha \mathord{\left/ {\vphantom {\alpha 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant C\left( T \right) ,0 < \alpha < 1$

则方程(1)~(5)的系数满足引理2,因此可得${\left\| u \right\|_{C_{x,t}^{2{\text{ + }}\alpha ,{{1{\text{ + }}\alpha } \mathord{\left/ {\vphantom {{1{\text{ + }}\alpha } 2}} \right. } 2}}\left( {{{\overline \varOmega }_T}} \right) }} \leqslant C\left( T \right) $,引理7得证。

由定理1可得解的局部存在性,由引理7可得解的有界性,基于解的有界性,进而可以得到如下定理:

定理2 当条件(b)成立时,任何$t > 0$时,模型(1)~(5)存在唯一的全局解。

5 数值模拟

为了更直观地体现模型中各成分的关系,本文考虑用差分数值方法求解偏微分方程组(1)~(5),包括二阶中心差分和一阶前后差分。为了说明简单,考虑无量纲化的数值模拟,这里设定模拟区域在$\left[ {0,50} \right] \times \left[ {0,50} \right]$网格中,时间步长为 $0.1$,空间步长为$0.5$

相关参数值为[17]$ {m_0} = {n_0} = {c_0} = {s_0} = {q_0} = 1, $${D_n} = 1 \times {10^{ - 7}},{D_c} = 1 \times {10^{ - 5}},{D_s} = 1 \times {10^{ - 2}},{D_q} = 1 \times {10^{ - 3}},$ ${\chi _c} = 5, {\chi _q} = 7,{\mu _n} \,=\, 0.7,{\mu _c} \,= 10,\theta \,=\, 9 \times {10^{ - 3}},\delta \,=\, 9 \times {10^{ - 7}},$ $\lambda = 5, {n_M} = 50,\varphi = 0.3,{\alpha _s} = {\beta _s} = {\alpha _q} = {\gamma _q} = 7 \times {10^{ - 8}}$

通过参数调整和数值方法求解,本文得到了从$t = 0.1$$t = 0.5$肿瘤淋巴管生成的5种成分浓度变化的模拟结果对比,如图3所示。

图 3$t = 0.1$$t = 0.5$各成分的浓度变化图 Figure 3 Concentration variation diagram of each component from $t = 0.1$ to $t = 0.5$

图3可以看出,随时间从$t = 0.1$$t = 0.5$:(1) ECM受到MMP降解作用局部出现波动;(2) 肿瘤细胞持续发生扩散增殖;(3) 内皮细胞由于趋化和发生转移而减少,局部呈现凹凸峰错叠状;(4) VEGF由ECM和肿瘤细胞分泌而增多,受到内皮细胞吸收而减少,局部出现波动;(5) MMP由肿瘤细胞和内皮细胞分泌而增多,向ECM发生转移而减少,局部也呈现凹凸峰错叠状;此外还包括有些成分的死亡消减等。由此,通过数值实验验证了本文所建立的模型符合如图1所示的生物原理和如图2所示的建模原理,是可靠和准确的,从数学层面反映了主要影响肿瘤淋巴管生成的各成分的变化。

6 结论与展望

相较于以往关注肿瘤生长规律的模型,本文在考虑了肿瘤与ECM相互作用的基础上,建立了一个新的肿瘤淋巴管生成模型。本文考虑了多种成分的相互影响,包含肿瘤生长情况以及ECM重塑和肿瘤淋巴管生成的数量情况。通过对该模型进行理论分析,证明了局部解和整体解的存在唯一性,并通过数值模拟验证了模型的可靠性和准确性。

这项研究对于更深入地理解肿瘤转移机制,指导癌症治疗,并推动相关研究的发展具有重要意义。未来,将进一步探索该模型在不同肿瘤类型和治疗方案中的应用,例如关键因素如何影响肿瘤转移等,并进一步优化模型以提高其预测能力和临床实用性,使其更符合真实的生物学环境。

参考文献
[1]
DILLEKS H, ROGERS M S, STRAUME O. Are 90% of deaths from cancer caused by metastases?[J]. Cancer Medicine, 2019, 8(12): 5574-5576. DOI: 10.1002/cam4.2474.
[2]
LIU P, DING P, SUN C, et al. Lymphangiogenesis in gastric cancer: function and mechanism[J]. European Journal of Medical Research, 2023, 28(1): 405.
[3]
ALEJANDRA G L, TATIANA V, PETROVA. Development and aging of the lymphatic vascular system[J]. Advanced Drug Delivery Reviews, 2021, 169: 63-78. DOI: 10.1016/j.addr.2020.12.005.
[4]
YANG Y L, CAO Y H. The impact of VEGF on cancer metastasis and systemic disease[J]. Seminars in Cancer Biology, 2022, 86(3): 251-261.
[5]
KAI F B, DRAIN A P, WEAVER V M. The extracellular matrix modulates the metastatic Journey[J]. Developmental Cell, 2019, 49(3): 332-346. DOI: 10.1016/j.devcel.2019.03.026.
[6]
LE X N, NILSSON M, GOLDMAN J, et al. Dual EGFR-VEGF pathway inhibition: a promising strategy for patients with EGFR-mutant NSCLC[J]. Journal of Thoracic Oncology, 2021, 16(2): 205-215. DOI: 10.1016/j.jtho.2020.10.006.
[7]
LIU Y, CAO X T. Characteristics and significance of the pre-metastatic niche[J]. Cancer Cell, 2016, 30(5): 668-681. DOI: 10.1016/j.ccell.2016.09.011.
[8]
QUINTERO-FABIÁN S, RODRIGO A, ECERRIL-VILLANUEVA, et al. Role of matrix metalloproteinases in angiogenesis and cancer[J]. Frontiers in Oncology, 2019, 9: 1307. DOI: 10.3389/fonc.2019.01307.
[9]
周云, 卫雪梅. 一个具有Robin自由边界的双曲肿瘤生长模型解的定性分析[J]. 广东工业大学学报, 2021, 38(2): 60-65.
ZHOU Y, WEI X M. A qualitative analysis of a hyperbolic tumor growth model with robin free boundary[J]. Journal of Guangdong University of Technology, 2021, 38(2): 60-65. DOI: 10.12052/gdutxb.200109.
[10]
梁小珍, 卫雪梅. 结肠癌细胞代谢模型解的存在性[J]. 广东工业大学学报, 2019, 36(5): 38-42.
LIANG X Z, WEI X M. Existence of the solution to the metabolic model of colon cancer cells[J]. Journal of Guangdong University of Technology, 2019, 36(5): 38-42. DOI: 10.12052/gdutxb.180177.
[11]
CUI S B. Analysis of a free boundary problem modeling tumor growth[J]. Acta Mathematica Sinica, 2005, 21(5): 1071-1082. DOI: 10.1007/s10114-004-0483-3.
[12]
LADYZHENSKAYA O A, SOLONNIKOV V A, URAL'TSEVA N N. Linear and quasi-linear equations of parabolic type[M]. Translations of Mathematical Monographs. USA: Am Math Soc, 1968: 23.
[13]
FRIEDMAN A, LOLAS G. Analysis of a mathematical model of tumor lymphangiogenesis[J]. Mathematical Models & Methods in Applied Sciences, 2005, 15(1): 95-107.
[14]
WEI X, CUI S. Existence and uniqueness of global solutions for a mathematical model of antiangiogenesis in tumor growth[J]. Nonlinear Analysis:Real World Applications, 2008, 9(5): 1827-1836. DOI: 10.1016/j.nonrwa.2007.05.013.
[15]
WEI X, GUO C. Global existence for a mathematical model of the immune response to cancer[J]. Nonlinear Analysis Real World Applications, 2010, 11(5): 3903-3911. DOI: 10.1016/j.nonrwa.2010.02.017.
[16]
王术. Sobolev空间与偏微分方程引论[M]. 北京: 科学出版社, 2009.
[17]
LAI X, FRIEDMAN A. Combination therapy for melanoma with braf/mek inhibitor and immune checkpoint inhibitor: a mathematical model[J]. BMC Systems Biology, 2017, 11(1): 70. DOI: 10.1186/s12918-017-0446-9.