﻿ 一种新的实测地层剖面绘制方法
 地质科学  2016, Vol. 51 Issue (3): 1002-1013 PDF

2015-04-10 收稿, 2016-01-15 改回.

1 导线法绘制的原理缺陷 1.1 常规导线段的缺陷

 图1 导线法对常规导线段影响示意图 Fig.1 The influence of the leading line method on the regular leading line
1.2 平移导线段的缺陷

 图2 实测地层剖面层面陡坎处理路线图 Fig.2 The different lines on the stratum scarp in the measured geological section

 图3 3种不同测量方式的导线平面图 Fig.3 The plane graph of the three different leading lines

 图4 3种不同测量方式的平移导线所对应的地形线 Fig.4 The rolling topography of the translational line with different measured line

 $\text{tan}\angle \text{abc}=\text{ac/bc}$ (1)

 $\text{ac=}l\sin \beta$ (2)

bc段是由5—6导的水平距垂直投影到总导线方位上得到的，由 图 4可知：
 $\text{bc}=l\cos \beta \cos \zeta$ (3)

 $\text{tan}\angle \text{abc}=\frac{l\sin \beta }{l\cos \beta \cos \zeta }=\frac{\sin \beta }{\cos \beta \cos \zeta }$ (4)

 $\text{tan}\angle \text{abc}=\frac{\sin \beta }{\cos \beta \cos \zeta }=\frac{\sin \alpha }{\cos \alpha \cos \zeta }$ (5)

 图5 3种情况下的视倾角计算示意图 Fig.5 The sketch map of the calculation of apparent inclination under the three different leading lines

 $\tan \theta =\frac{\text{ab}}{\text{ac}}=\frac{\text{bd}\sin \alpha }{\text{bd}\cos \alpha /\cos \gamma }=\tan \alpha \cos \gamma$ (6)

A路线情况时，即沿导线倾向方向测量层面时，若地形线为岩性线时，则∠abc等于视倾角，由公式(5)和公式(6)得：

 $\cos \zeta \cos \gamma =1$ (7)

 $\cos {{\left( \varphi -\eta \right)}^{2}}=1$ (8)

 $\varphi =\eta$ (9)

 $\frac{\tan \beta }{\cos \zeta }=\tan \alpha \cos \gamma$ (10)

 $\tan \beta =\frac{\text{ab}}{\text{af}}=\frac{\text{bd}\sin \alpha }{\text{bd}\cos \alpha /\cos \left( \zeta +\gamma \right)}=\tan \alpha \cos \left( \zeta +\gamma \right)$ (11)

 $\cos \left( \zeta +\gamma \right)=\cos \zeta \cos \gamma$ (12)

 $\sin \zeta \sin \gamma =0$ (13)

 图6 层面陡坎处理的平移线与层面线夹角实质图 Fig.6 The substance for the angle between the stratum line and the translational line on the stratum scarp

2 实测剖面绘制新方法——三维投影法

 图7 实测地层剖面三维投影法原理 Fig.7 The theory of the profile drawing with 3D projection of measured geological section

 图8 实测剖面三维投影绘图法步骤 Fig.8 The steps of the profile drawing with 3D projection of the measured geological section
3 应用实例

 图9 安徽巢湖市凤凰山地区麒麟山背斜东南翼石炭纪地层三维投影法实测地层剖面图 a. 导线平面图；b. 三维投影法确定地形转折点位置图；c. 三维投影法确定地层界线点位置图；d. 用b和c投影绘制的实测地层剖面图 Fig.9 The measured geological map of carbonic stratum by the profile drawing method with 3D projection at the southeast part of Qilin Mountain anticline，Fenghuang Mountain region，Chaohu City，Anhui Province

 图10 安徽巢湖市凤凰山地区麒麟山背斜东南翼石炭纪地层导线法实测地层剖面图 Fig.10 The measured geological map of carbonic stratum by the leading line method at the Southeast part of Qilin Mountain anticline，Fenghuang Mountain region，Chaohu City，Anhui Province

4 结 论

(1) 导线法二次二维投影绘制方式造成常规导线在总导线方位上确定的地层边界点并非实际的地层边界点。

(2) 导线法二次二维投影绘制方式与视倾角三维计算方式的差异性，造成了层面陡坎上的不同测量方式的导线均是平移线，并且使地形线与岩性线之间存在夹角。只有当计算得到的总导线方位与层面陡坎倾向一致，或总导线方位与层面上分导线方位一致时，才会出现岩性线与平移线重叠现象。

(1) 三维投影剖面绘制方法，解决了导线法二次二维投影对常规导线的影响，使得常规导线在总导线方位上确定的地层边界点为真实的地层边界点，且三维投影法绘制的地层剖面图与总导线方位上的图切剖面一致。

(2) 三维投影剖面绘制方法，从原理上解决了二次二维投影与视倾角三维计算的矛盾，使得平移导线只在导线平面图中展现，而不出现在地层剖面图之中，消除了地形线与岩性线之间存在夹角和平移导线处理多解性问题。

 [1] 陈志军, 陈建国. 2012. 基于MapGIS的图切地质剖面系统面向对象设计与实现. 地质学刊, 36 (3): 256-264 . [2] Chen Zhijun and Chen Jianguo. 2012. Object orientation design and implementation for cutting section of geological map system based on MapGIS. Journal of Geology, 36 (3): 256-264. [3] 方世明, 刘刚, 赵温霞等. 2002. 地质图切剖面中褶皱构造的计算机辅助编绘. 地质与勘探, 38 (3): 52-54 . [4] Fang Shiming, Liu Gang, Zhao Wenixa et al. 2002. The drawing aided by computer of the anticline and syncline in the section from geological map. Geology and Prospecting, 38 (3): 52-54. [5] 郭福生, 林银山, 龙金花. 1999. 岩层真厚度计算公式述评——兼与佟再三、 佟洁、 许边远同志商榷. 中国煤田地质, 11 (2): 23-25 . [6] Guo Fusheng, Lin Yinshan and Long Jinhua. 1999. Review of formula for calculating the true thickness of strata. Coal Geology of China, 11 (2): 23-25. [7] 黄立华. 1986. 岩层厚度计算的新方法——矢量代数法. 地层学杂志, 10 (2): 148-152 . [8] Huang Lihua. 1986. A new method for the calculation of rock thickness: Vector algebra method. Journal of Stratigraphy, 10 (2): 148-152. [9] 李义才, 刘刚, 吴冲龙. 2001. 计算机辅助实测地质剖面图编绘系统设计. 地质通报, 20 (3): 304-308 . [10] Li Yicai, Liu Gang and Wu Chonglong. 2001. Design of the computer-aided geological section-making system. Geological Bulletin of China, 20 (3): 304-308. [11] 刘杰, 梁立恒, 王海鹏. 2009. MapGIS下图切地质剖面自动绘制方法探究. 测绘与空间地理信息, 32 (5): 52-54 . [12] Liu Jie, Liang Liheng and Wang Haipeng. 2009. Study on the method of auto-draw slice geological profile in MapGIS. Geomatics & Spatial Information Technology, 32 (5): 52-54. [13] 裴丽娜. 2011. 基于ArcEngine的灾害地质立体图图切剖面技术研究(硕士学位论文). 武汉: 中国地质大学. 1-69. [14] Pei Lina. 2011. Technology on Transverse Cutting Profile of the Three Dimensional Geological Hazard Maps Based on ArcEngine(Master's Thesis). Wuhan: China University of Geosciences. 1-69. [15] 漆树基. 1991. 利用袖珍计算器计算岩层真厚度. 地质通报, (2): 188-193 . [16] Qi Shuji. 1991. Calculation of the true thickness of strata by use of the pocket calculator. Geological Bulletin of China, (2): 188-193 [17] 沈忠悦. 1988. 一个通用的岩层厚度计算公式. 地质与勘探, 24 (1): 35-36 . [18] Shen Zhongyue. 1988. A common calculation equation of the strata thickness. Geology and Prospecting, 24 (1): 35-36. [19] 佟再三. 1983. 岩层真厚度计算之程序. 地质与勘探, 19 (11): 38-41 . [20] Tong Zaisan. 1983. The calculation procedure of the true strata thickness. Geology and Prospecting, 19 (11): 38-41. [21] 王兆国, 鲁如魁. 2015. 基于Fortran语言和GMT软件的实测地质剖面的迅速实现. 计算机应用, 35 (增刊2):301-304 . [22] Wang Zhaoguo and Lu Rukui. 2015. Rapid implementation of measured geological section based on Fortran language and GMT software. Journal of Computer Applications, 35 (suppl. 2): 301-304. [23] 王铸. 2009. 利用ActiveX Automation在AutoCAD中自动切取地质剖面. 工程地质计算机应用, (4): 32-38 . [24] Wang Zhu. 2009. Automatically cut the geological section in the AutoCAD software using ActiveX automation. Engineering Geology Computer Application, (4): 32-38. [25] 肖水清. 1977. 实测剖面上计算岩层厚度的方法. 地质与勘探, 13 (3): 50-52 . [26] Xiao Shuiqing. 1977. The calculation of the strata thickness in the measured geological section. Geology and Prospecting, 13 (3): 50-52. [27] 许边远. 1998. 试用矢量表示岩层真厚度. 地质通报, 17 (1): 80-86 . [28] Xu Bianyuan. 1998. The use of the vector in expressing the true thickness of strata. Geological Bulletin of China, 17 (1): 80-86. [29] 许明七. 1985. 求岩层真厚度的简易计算程序. 地质与勘探, 21 (9): 35-36 . [30] Xu Mingqi. 1985. The calculation precedure of the true strata thickness. Geology and Prospecting, 21 (9): 35-36. [31] 杨光忠, 胡永虹. 2002. 试论实测地质剖面的电算化处理. 贵州地质, 19 (1): 67-71 . [32] Yang Guangzhong and Hu Yonghong. 2002. Treatment of electronic calculation for measured geological sections. Guizhou Geology, 19 (1): 67-71. [33] 杨利容, 赖德军, 罗娟. 2011. 基于AutoCAD实测地质剖面数字成图关键技术. 物探与化探, 35 (2): 261-264 . [34] Yang Lirong, Lai Dejun and Luo Juan. 2011. The key technology for digital mapping of measured geological profile based on AutoCAD. Geophysical & Geochemical Exploration, 35 (2): 261-264. [35] 庄培德. 1983. 地层厚度计算方法的改进. 地层学杂志, 7 (2): 154-158 . [36] Zhuang Peide. 1983. The improvement of the calculation method of the strata thickness. Journal of Stratigraphy, 7 (2): 154-158.
A kind of new drawing method of measured stratigraphy section

Wang Zhaoguo, Lu Rukui
The Key laboratory of Continental Dynamics, Ministry of Education, Department of Geology, Northwest University, Xi′an 710069
Abstract: Nowadays the measured stratigraphy section is usually drawn using the leading line method, but the leading line method usually makes that the boundary point determined by the regular leading line in the direction of the total leading line is not the real boundary point, especially the form line determined by the translational line in the measured stratigraphy section has a relatively big angle with the rock line. Aimed at the flaw problem of the leading line method in the drawing of measured stratigraphy section, a new profile drawing method with 3D projection is implemented. Firstly, it makes the boundary point determined by the regular leading line in the direction of the total leading line to be the real boundary point. At the same time it also enables the measured stratigraphy section drawn by the profile drawing method with 3D projection to be the same as the cutting profile in the direction of the total leading line. Secondly, it makes the translational line still exist in the plane figure and don't take on in the geological profile, and it eliminates the problem of the angle between the rock line and the form line and the problem of the various forms of the translational line.
Key words: Measured stratigraphy section    Stratum scarp    Profile drawing with 3D projection