地质科学  2016, Vol. 51 Issue (3): 748-762   PDF    
西藏南羌塘侏罗系色哇组构造变形特征及其构造意义

崔玉良1, 1, 王根厚2 , 郎欣欣3, 李典2    
1. 北京探矿工程研究所 北京 100083;
2. 中国地质大学(北京)地球科学与资源学院 北京 100083;
3. 内蒙古自治区第十地质矿产勘查开发院 内蒙古赤峰 024000
基金项目: 中国地质调查局地质调查项目(编号: 1212011121244, 1212011221081, 1212011221115)资助
崔玉良, 男, 1989年12月生, 硕士研究生, 构造地质学专业。E-mail: 814399394@qq.com
王根厚, 男, 1963年5月生, 博士, 教授, 构造地质学专业。本文通讯作者。E-mail: wgh@cugb.edu.cn
2015-05-27 收稿, 2015-12-28 改回.
摘要: 班公湖—怒江洋的演化一直以来备受关注, 对于其俯冲极性有不同的认识, 前人大多从岩石学、 地球化学等方面的证据去探讨, 而缺乏构造变形的相关研究。本文以构造解析理论为指导, 通过野外大比例尺填图、 构造实测剖面等工作对研究区色哇组的构造样式、 变形期次等进行了研究。综合研究表明, 西藏热那错地区和荣玛地区侏罗系色哇组地层均发育紧闭的三级复式褶皱以及后期叠加的平缓—开阔褶皱。早期褶皱的褶皱轴近东西向展布, 板劈理近东西走向, 是南北向挤压作用的产物。在热那错地区早白垩世美日切错组火山岩角度不整合于已变形的侏罗系色哇组之上, 且色哇组紧闭褶皱的构造样式未在美日切错组火山岩中发育, 推断色哇组紧闭褶皱发生在早白垩世之前。结合研究区大地构造背景, 推断研究区内侏罗系色哇组地层的早期紧闭的三级复式褶皱是班公湖—怒江洋向北俯冲的产物, 而后期叠加的平缓—开阔褶皱可能与羌南地块和拉萨地块的碰撞有关。
关键词: 南羌塘    班公湖—怒江    侏罗纪地层    复式褶皱    

中图分类号:P542     doi: 10.12017/dzkx.2016.027

班公湖—怒江缝合带位于羌塘地块与拉萨地块之间,是认识西藏中部地区构造演化很关键的一条缝合带(Girardeau et al., 1984Dewey et al., 1988Pierce and Deng, 1988Yin and Harrison, 2000Kapp et al., 2005Zhang et al., 2012)。班公湖—怒江洋壳俯冲方向是一个长期存在的问题,是向南、向北还是双向俯冲,学者们有着不同的认识(Allègre et al., 1984Kapp et al., 20032005潘桂棠等,2004Guynn et al., 2006耿全如等,2011Zhu et al., 2013)。前人普遍认为班公湖—怒江洋壳存在于晚三叠世—早白垩世之间,随后在晚白垩世之前班公湖—怒江洋壳俯冲消减直至拉萨地块与羌塘地块发生碰撞(Girardeau et al., 1984Xu et al., 1985Dewey et al., 1988Pierce and Deng, 1988Yin and Harrison, 2000Kapp et al., 2005Leier et al., 2007Zhu et al., 2009)。近些年来,学者依据在南羌塘发现的侏罗—白垩纪与俯冲相关的岩浆活动推断班公错—怒江洋存在向北的俯冲(Allègre et al., 1984Kapp et al., 2005廖六根等,2005Guynn et al., 2006杜德道等,2011耿全如等,2011张璋等,2011Li et al., 20132014a2014bLiu et al., 2014)。Fan et al.(20142015a2015b)通过对班公湖—怒江缝合带内的岩浆岩研究,推断班公湖—怒江洋在晚二叠世—早三叠世打开,在晚三叠世—中侏罗世迅速扩张,且俯冲发生在中侏罗世,在晚侏罗世—早白垩世时期之后发生碰撞。Guynn et al.(2006)通过对聂荣微陆块结晶基底的热年代学研究,发现了侏罗纪变质和岩浆作用的记录,认为其与班公湖—怒江洋壳向北俯冲有关。廖六根等(2005)在班公湖—怒江结合带北侧发现陆缘火山—岩浆弧带,认为是班公湖—怒江特提斯洋在晚侏罗世—早白垩世向北俯冲以及随后发生碰撞的产物。Kapp et al.(2003)对位于狮泉河地区蛇绿岩带的研究,推断班公湖—怒江洋盆在三叠纪打开,到早侏罗世扩张成深海洋盆,晚侏罗世班公湖—怒江洋壳开始向北侧羌塘地块之下俯冲,至侏罗纪末—白垩纪初洋盆完全闭合。潘桂棠等(2006)认为班公湖—怒江洋打开于晚三叠世之前,接着发生双向俯冲,到早白垩世末闭合,致使拉萨地块与羌塘地块碰撞拼合。李金祥等(2008)对多不杂矿区岩浆作用进行了研究,认为多不杂铜矿床形成于岛弧构造背景,大约120Ma时班公湖—怒江洋盆还在向北俯冲,洋盆最终闭合时间应晚于早白垩世中期。杜德道等(2011)通过研究班公湖—怒江缝合带西段狮泉河—改则—洞错蛇绿岩带北侧以及拉果错蛇绿岩带南侧岛弧型花岗年龄以及地球化学特征,认为班公湖—怒江洋壳向北俯冲发生在晚侏罗世(约155Ma),向南俯冲发生在早白垩世(约142Ma),两者相差约为8Ma。曲晓明等(20092010)通过对班公湖—怒江缝合带蛇绿岩以及火成岩的研究,认为班公湖—怒江中特提斯洋盆的打开时间为早侏罗世晚期,中侏罗世晚期—晚侏罗世洋壳向北俯冲。

过去十几年,大家更多关注班公湖—怒江缝合带的年代学、物质组成、变质作用与其演化的关系。而对与班公湖—怒江缝合带演化相关的羌南地块南部侏罗纪地层的构造样式鲜有人研究与报道。本文通过在西藏热那错地区与荣玛地区进行野外大比例尺填图以及实测构造剖面等工作,对研究区色哇组构造样式、变形期次进行了研究,结合色哇组变形时代的证据,探讨了构造变形与班公湖—怒江缝合带的关系。

1 地质背景

青藏高原是特提斯域拼贴造山带的主要组成部分(Allègre et al., 1984Sengör,1990Yin and Harrison, 2000),从北到南由柴达木地块、松潘—甘孜复理石杂岩、羌塘地块、拉萨地块和喜马拉雅地块组成。这些地块被东西向古生代—中生代缝合带所分隔(Yin and Harrison, 2000)。李才(1987)李才等(1995)最早提出了龙木错—双湖缝合带的概念,并将其厘定为冈瓦纳大陆的北界。该缝合带将羌塘地块分为亲冈瓦纳的羌南—保山板块与亲扬子的羌北—昌都板块(图 1),记录了青藏高原早期发展和特提斯洋演化的重要信息(李才,1987李才等, 19952009刘本培等,2002Pan et al., 2012)。荣玛地区与热那错地区均位于班公湖—怒江缝合带以北的羌南地块。

图1 青藏高原羌塘中部板块构造及高压变质带展布简图(李才等,2006)
NBT. 龙木错—双湖缝合带主北边界断裂;SBT. 龙木错—双湖缝合带主南边界断裂
Fig.1 Sketch map of plate suture and HP metamorphic belt of Qiangtang area,Qinhai-Tibet Plateau(Li et al., 2006)

西藏热那错地区主要出露中二叠统龙格组、上三叠统日干配错组、下-中侏罗统色哇组、中侏罗统莎巧木组、下白垩统美日切错组、新近系康托组以及第四系。龙格组岩性以大理岩化灰岩为主,逆冲推覆到新地层之上。研究区色哇组整体呈复式褶皱形态分布,其上与中侏罗统莎巧木组整合接触,其下与上三叠统日干配错组断层接触(图 2)。下-中侏罗统色哇组岩性以泥质板岩、钙质板岩、变质粉砂岩、强劈理化变质砾岩为主,夹微晶灰岩和生物碎屑灰岩,局部有垮塌礁灰岩。色哇组沉积相为半深海—深海浊积岩相,为日干配错组沉积后快速拉张的沉积产物。中侏罗统莎巧木组岩性以硅质条带灰岩、砂屑灰岩、泥质粉砂质板岩为主,砾屑灰岩、砂岩次之,沉积环境为混积陆棚。区内断裂以北东—南西、北西—南东向为主,并发育有晚侏罗世—早白垩世中酸性岩浆岩。

图2 西藏热那错地区地质图(修改自脚注①(① 中国地质大学(北京)地质调查研究院.2013.西藏1:5拉嘎那幅、多玛错幅、娘荣错幅、热那错幅区域地质 调查报告(内部资料).)) Fig.2 Geological map of Renacuo area,Tibet

西藏荣玛地区主要出露石炭—二叠系增生杂岩、下-中二叠统吞龙共巴组、中二叠统龙格组、上三叠统日干配错组、下-中侏罗统色哇组、古近系纳丁错组、新近系康托组、新近系唢呐湖组以及第四系。区内主要发育北东—南西向断裂。新生代以前的岩浆岩出露较少,出露有晚侏罗世闪长岩(冉皞等,2015),新生代以来火山岩发育有纳丁错组火山岩及康托组中部和底部的火山岩夹层。下-中侏罗统色哇组岩性为砂质泥岩、粉砂质泥岩、粉砂岩、泥岩及少量灰岩夹层,动力变质作用下,发育透入性板劈理。色哇组沉积相为半深海—深海浊积岩相,亦为日干配错组沉积后快速拉张的沉积产物,其上与新生代地层不整合接触,其下与上三叠统日干配错组整合接触。

研究区内色哇组最早由文世宣(1979)提出并命名,根据化石证据确定其时代为中侏罗世早期,不排除有早侏罗世晚期沉积存在的可能。根据研究区区调工作,在色哇组细砂岩中采取了两件样品用于碎屑锆石研究,选取两件样品中19个测试点,得到6组年龄段:2701Ma;2132~1802Ma;1693~1540Ma;915Ma;452~445Ma;261~195Ma。最新的261~195Ma年龄,表明色哇组至少是在早侏罗世或之后沉积的。研究区色哇组中垮塌灰岩中采集到大量六射珊瑚化石,经鉴定化石时代为晚三叠世,由于化石采自垮塌灰岩中,故色哇组年代应晚于晚三叠世中国地质大学(北京)地质调查研究院. 2013. 西藏1∶5拉嘎那幅、多玛错幅、娘荣错幅、热那错幅区域地质调查报告(内部资料).。研究区热那错北色哇组被中酸性岩体侵入,根据其内SHRIMP锆石U-Pb测年所获147.3±3.3Ma的年龄,可推测研究区色哇组的沉积时期上限为晚侏罗世(肖宵,2015)。结合区域上色哇组的划分时代(西藏自治区地质矿产局,1997),认为色哇组的时代为早-中侏罗世。

2 热那错地区色哇组变形特征 2.1 构造样式

研究区侏罗纪地层主体构造样式为褶皱轴近东西向紧闭的复式褶皱(图 2)。发育的大量小褶皱、线理、劈理及部分断层均为复式褶皱的次级小构造。主期构造强烈变形使色哇组地层发生强烈的构造置换,近东西走向的板劈理S1已基本置换原生层理S0,成为研究区色哇组的主期面理。

位于侏罗系复式褶皱核部的解析区(图 3),以夹有灰岩条带、砂岩层及玄武岩层的色哇组为主,莎巧木组次之。褶皱翼部为色哇组,其次一级褶皱均发育从属褶皱(次二级),次二级从属褶皱内标志层发育次三级从属褶皱。褶皱轴均呈东西向展布。

图3 热那错地区色哇组 1︰1万岩性—构造地质简图及AB剖面图
;产状符号中上面的数字表示倾向,下面的数字表示倾角
Fig.3 1∶10 000 lithologic-structural sketch map,AB cross-section of Sewa Formation in Renacuo area

色哇组内夹于泥质板岩的砂岩层(图 4b)、玄武岩层及少量灰岩层发育次三级紧闭从属褶皱,褶皱尺度为厘米至米级。横剖面上,M形褶皱为近直立倾伏褶皱,S及Z形褶皱为斜歪倾伏褶皱,枢纽多向西倾伏(图 3)。南北倾向劈理均有产出,但劈理总体为近东西走向(图 3)。

图4 热那错地区色哇组内次级褶皱 a. 次一级向斜南翼色哇组岩层形成的S型次二级褶皱;b. 色哇组薄层砂岩在褶皱过程中形成紧闭的次三级褶皱 Fig.4 Subsidiary fold of Sewa Formation in Renacuo area

次二级从属褶皱以色哇组及莎巧木组岩层为标志层,褶皱尺度为米至百米级(图 4a)。其形态与位态相似于次三级从属褶皱。次二级从属褶皱为枢纽多向西倾伏及轴面倾斜的斜歪倾伏褶皱。

次一级褶皱尺度为千米级。通过构造解析,解析区莎巧木组北侧色哇组发育的次二级从属褶皱在平面和剖面上均为Z形褶皱,南侧色哇组发育的次二级从属褶皱为S形褶皱,褶皱核部的莎巧木组发育M形褶皱(图 3)。综上,解析区次一级褶皱为褶皱轴近东西向向斜。

2.2 变形期次划分

研究区发育以D1期褶皱轴面为变形面形成的平缓—开阔褶皱(表 1)。后期褶皱主要体现在莎巧木组的叠加褶皱(图 5a),褶皱翼尖角为70°~130°,岩层厚度变化不大。莎巧木组叠加褶皱的叠加样式为共轴叠加(图 5a)。

表1 热那错地区侏罗系地层变形序列 Table 1 Deformation sequence of Jurassic stratum in Renacuo area

图5 热那错地区莎巧木组野外构造变形特征与色哇组劈理镜下特征 a. 莎巧木组内硅质条带灰岩发生共轴叠加褶皱;b. 色哇组粉砂质板岩中发育的劈理形态 Fig.5 The tectonic deformation characteristics of Shaqiaomu Formation and the microscopic feature of cleavage of Sewa Formation in Renacuo area

上述后期构造变形特点反映了在主期褶皱、主期劈理(图 5b)形成之后受到后期构造变形的影响(表 1),但第二期褶皱未形成区域性面理S2

3 荣玛地区色哇组变形特征 3.1 构造样式

荣玛地区侏罗系色哇组解析区主体构造样式为紧闭的三级复式褶皱(图 6),发育层间劈理和轴面劈理。第一期构造变形形成复式褶皱,发育的劈理S1已基本置换原生层理S0,成为研究区的主期面理,相似于热那错地区主体构造样式。

图6 西藏荣玛地区地质图(修改自西藏 1︰5万扎嘎日幅、玛瓦吉次幅、牛山幅、那刚日幅地质图 (② 中国地质大学(北京)地质调查研究院.2013.西藏1:5万扎嘎日幅、玛瓦吉次幅、牛山幅、那刚日幅地质图.)) Fig.6 Geological map of Rongma area,Tibet

侏罗纪地层次一级褶皱核部以色哇组内灰岩层和砂岩层为标志层发生褶皱(图 7)。次三级从属褶皱呈S、Z型发育在次二级从属褶皱翼部(图 8a图 8b图 8c)。次二级褶皱转折端常发育M或W型次三级从属褶皱(图 8d)。次三级从属褶皱尺度在十几厘米到数米之间,形态为紧闭—开阔褶皱。解析区内次二级褶皱总体为一M型褶皱,形态为紧闭—中常褶皱。劈理南、北倾向均有产出,但劈理总体为近东西走向(图 7)。

图7 玛地区色哇组 1︰1万岩性—构造地质简图 Fig.7 1︰10 000 lithologic-structural sketch map of Sewa Formation in Rongma area

图8 荣玛地区色哇组地层褶皱 a. 薄层灰岩次三级褶皱;b. 极薄层粉砂岩次三级褶皱;c. 薄层灰岩次三级褶皱 d. 次二级褶皱转折端 Fig.8 Fold of Sewa Formation in Rongma area

通过宏观遥感解译并根据次二级从属褶皱的推断,次一级褶皱在区域上确实发育。综上,该区色哇组发育三级复式褶皱,与热那错地区侏罗纪地层发育的复式褶皱高度相似。

3.2 变形期次划分

第二期褶皱是以第一期褶皱轴面为变形面形成的平缓—开阔平行褶皱(表 2),但未形成区域性面理(图 7)。

表2 荣玛地区侏罗纪地层变形序列 Table 2 Metamorphic-structural of Jurassic stratum in Rongma area
4 热那错地区火山岩年龄

多玛错西美日切错组火山岩主体岩性为安山岩。将所采样品粉碎并挑选出自形程度较好、振荡环带明显的锆石在中国地质大学(北京)进行LA-ICP-MS U-Pb同位素定年。经统计,206 Pb/238 年龄加权平均值为111.7±0.7Ma(图 9),代表其形成时代为早白垩世。

图9 热那错地区早白垩世安山岩U-Pb谐和图和206 Pb/238 U年龄图 Fig.9 U-Pb Concordia diagram of the zircons from the Early Cretaceous andesite in Renacuo area

下白垩统美日切错组火山岩与下-中侏罗统色哇组之间缺失了部分地层,可判断下白垩统美日切错组与下伏地层存在不整合接触。美日切错组火山岩仅发育一些节理,未发育露头尺度的褶皱构造及相关小构造。遥感影像中,下-中侏罗统色哇组紧闭褶皱的构造样式未在美日切错组火山岩中发育(图 10),证明下-中侏罗统色哇组的变形时代应该在早白垩世之前。

图10 西藏热那错研究区局部Google Earth遥感影像图 a. 热那错研究区色哇组与美日切错组变形特征对比遥感影像图;b. 下-中侏罗统色哇组紧闭褶皱样式;c. 下白垩统美日切错组火山岩构造特征(未发育明显的褶皱构造) Fig.10 Part Google Earth remote sensing image map in Renacuo area,Tibet
5 讨 论

西藏热那错地区侏罗系地层和荣玛地区侏罗系地层发育D1期相似的紧闭三级复式褶皱,褶皱轴面走向近东西向,且同期形成的劈理走向均呈东西向,故近南北向的最大主应力挤压形成色哇组的变形。热那错地区下白垩统美日切错组火山岩角度不整合于已变形的侏罗系色哇组之上。结合卷入变形的最新地层为中侏罗统莎巧木组的事实,侏罗系色哇组的变形时代在中侏罗世—早白垩世之间。

班公湖—怒江洋壳在晚侏罗世—早白垩世期间存在向北俯冲的极性(Allègre et al., 1984Kapp et al., 2005廖六根等,2005Guynn et al., 2006杜德道等,2011耿全如等,2011张璋等,2011Li et al., 20132014a2014bLiu et al., 2014)。而且荣玛地区也存在晚侏罗世闪长岩,为班公湖—怒江特提斯洋向北俯冲的产物(冉皞等,2015)。

综上,结合荣玛地区与热那错地区侏罗系色哇组具有相似的主期(D1)变形特征,且两地区下-中侏罗统色哇组变形发生在中侏罗世—早白垩世期间,推断侏罗系色哇组的变形为班公湖—怒江洋壳向北俯冲挤压的产物,挤压变形过程中伴随着岩浆活动(图 11)。后期(D2)叠加褶皱可能是羌塘地块与拉萨地块碰撞形成的。

图11 班公湖—怒江洋演化模式图 Fig.11 Evolution model of Bangong Co-Nujiang ocean
6 结 论

(1) 研究认为侏罗系色哇组构造样式为三级复式褶皱,构造置换作用明显,形成透入性的连续板劈理,且交面线理、皱纹线理大量发育,形成于中—浅构造层次。

(2) 色哇组复式褶皱的变形时代发生在早白垩世之前,且发生在被卷入变形地层的中侏罗统莎巧木组之后。

(3) 分析认为早期(D1)构造变形是班公湖—怒江洋向北俯冲的产物。

致谢 本文依托于中国地质调查局在羌塘中部开展的造山带地质调查与综合研究项目:“西藏 1︰5万荣玛乡地区4幅区域地质调查(1212011221081)”、“西藏 1︰5万热那错地区4幅区域地质调查(1212011121244)” “南羌塘中新生代盆地的基底构造属性及变形变质作用研究(1212011221115)”。感谢项目组成员的大力帮助以及审稿专家提出的宝贵意见。

参考文献
[1] 西藏自治区地质矿产局. 1997. 西藏自治区岩石地层. 武汉: 中国地质大学出版社. 1-302.
[2] Bureau of Geology and Mineral Resource of Xizang Autonomous Region. 1997. Stratigraphy(Lithostratic)of Xizang Autonomous Region. Wuhan: China University of Geosciences Press. 1-302.
[3] 杜德道, 曲晓明, 王根厚等. 2011. 西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲: 来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据. 岩石学报,27 (7): 1993-2002.
[4] Du Dedao, Qu Xiaoming, Wang Genhou et al. 2011. Bidirectional subduction of the Middle Tethys oceanic basin in the west segment of Bangonghu-Nujiang suture, Tibet: Evidence from zircon U-Pb LAICPMS dating and petrogeochemistry of arc granites. Acta Petrologica Sinica, 27 (7): 1193-2002.
[5] 耿全如, 潘桂棠, 王立全等. 2011. 班公湖-怒江带、 羌塘地块特提斯演化与成矿地质背景. 地质通报,30 (8): 1261-1274.
[6] Geng Quanru, Pan Guitang, Wang Liquan et al. 2011. Tethyan evolution and metallogenic geological background of the Bangong Co-Nujiang belt and the Qiangtang massif in Tibet. Geological Bulletin of China, 30 (8): 1261-1274.
[7] 李才. 1987. 龙木错-双湖-澜沧江板块缝合带与石炭二叠纪冈瓦纳北界. 吉林大学学报(地球科学版),17 (2): 155-166.
[8] Li Cai. 1987. The Longmucuo-Shuanghu-Lancangjiang plate suture and the north boundary of distribution of Gondwana facies Permo-Carboniferous system in northern Xizang, China. Journal of Jilin University(Earth Science Edition),17 (2): 155-166.
[9] 李才, 程立人, 胡克等. 1995. 西藏龙木错-双湖古特提斯缝合带研究. 北京: 地质出版社. 1-130.
[10] Li Cai, Cheng Liren, Hu Ke et al.1995. Study on the Paleo-Tethys Suture Zone of Lungmu Co-Shuanghu, Tibet. Beijing: Geological Publishing House. 1-130.
[11] 李才, 翟庆国, 陈文等. 2006. 青藏高原羌塘中部榴辉岩Ar-Ar定年. 岩石学报,22 (12): 2843-2849.
[12] Li Cai, Zhai Qingguo, Chen Wen et al. 2006. Ar-Ar chronometry of the eclogite from central Qiangtang area, Qinghai-Tibet Plateau. Acta Petrologica Sinica, 22 (12): 2843-2849.
[13] 李才, 翟刚毅, 王立全等. 2009. 认识青藏高原的重要窗口--羌塘地区近年来研究进展评述(代序). 地质通报,28 (9): 1169-1177.
[14] Li Cai, Zhai Gangyi, Wang Liquan et al. 2009. An important window for understanding the Qinghai-Tibet Plateau: A review on research progress in recent years of Qiangtang area, Tibet, China. Geological Bulletin of China, 28 (9): 1169-1177.
[15] 李金祥, 李光明, 秦克章等. 2008. 班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代: 对成矿构造背景的制约. 岩石学报,24 (3): 531-543.
[16] Li Jinxiang, Li Guangming, Qin Kezhang et al. 2008. Geochemistry of porphyries and volcanic rocks and ore-forming geochronology of Duobuza gold-rich porphyry copper deposit in Bangonghu belt, Tibet: Constraints on metallogenic tectonic settings. Acta Petrologica Sinica, 24 (3): 531-543.
[17] 廖六根, 曹圣华, 肖业斌等. 2005 班公湖-怒江结合带北侧陆缘火山-岩浆弧带的厘定及其意义. 沉积与特提斯地质,25 (1-2): 163-170.
[18] Liao Liugen, Cao Shenghua, Xiao Yebin et al. 2005. The delineation and significance of the continental-margin volcanic-magmatic arc zone in the northern part of the Bangong-Nujiang suture zone. Sedimentary Geology and Tethyan Geology,25 (1-2): 163-170.
[19] 刘本培, 冯庆来, Chonglakmani C等. 2002. 滇西古特提斯多岛洋的结构及其南北延伸. 地学前缘,9 (3): 161-171.
[20] Liu Benpei, Feng Qinglai, Chonglakmani C et al. 2002. Framework of paleotethyan archipelago ocean of western Yunnan and its elongation towards north and south. Earth Science Frontiers, 9 (3): 161-171.
[21] 潘桂棠, 朱弟成, 王立全等. 2004. 班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据. 地学前缘,11 (4): 371-382.
[22] Pan Guitang, Zhu Dicheng, Wang Liquan et al. 2004. Bangong Lake-Nu River suture zone-the northern boundary of Gondwanaland: Evidence from geology and geophysics. Earth Science Frontiers, 11 (4): 371-382.
[23] 潘桂棠, 莫宣学, 侯增谦等. 2006. 冈底斯造山带的时空结构及演化. 岩石学报,22 (3): 521-533.
[24] Pan Guitang, Mo Xuanxue, Hou Zengqian et al. 2006. Spatial-temporal framework of the Gangdese orogenic belt and its evolution. Acta Petrologica Sinica, 22 (3): 521-533.
[25] 曲晓明, 王瑞江, 辛洪波等. 2009. 西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学. 地球化学,38 (6): 523-535.
[26] Qu Xiaoming, Wang Ruijiang, Xin Hongbo et al. 2009. Geochronology and geochemistry of igneous rocks related to the subduction of the Tethys oceanic plate along the Bangong Lake arc zone, the western Tibetan Plateau. Geochimica, 38 (6): 523-535.
[27] 曲晓明, 辛洪波, 赵元艺等. 2010. 西藏班公湖中特提斯洋盆的打开时间: 镁铁质蛇绿岩地球化学与锆石U-Pb LAICPMS定年结果. 地学前缘,17 (3): 53-62.
[28] Qu Xiaoming, Xin Hongbo, Zhao Yuanyi et al. 2010. Opening time of Bangong Lake Middle Tethys oceanic basin of the Tibet Plateau: Constraints from petro-geochemistry and zircon U-Pb LAICPMS dating of mafic ophiolites. Earth Science Frontiers, 17 (3): 53-62.
[29] 冉皞, 王根厚, 梁晓等. 2015. 青藏高原南羌塘荣玛晚侏罗世闪长岩: 班公湖-怒江特提斯洋向北俯冲产物. 地质通报,34 (5): 815-825.
[30] Ran Hao, Wang Genhou, Liang Xiao et al. 2015. The Late Jurassic diorite in Rongma area, southern Qiangtang terrane, Tibetan Plateau: Product of northward subduction of the Bangong Co-Nujiang River tethys ocean. Geological Bulletin of China, 34 (5): 815-825.
[31] 文世宣. 1979. 西藏北部地层新资料. 地层学杂志,3 (2): 150-156.
[32] Wen Shixuan. 1979. New data of formation in northern Tibet. Journal of Stratigraphy, 3 (2): 150-156.
[33] 肖宵. 2015. 西藏改则热那错地区中酸性侵入岩岩石地球化学特征及形成背景(硕士学位论文). 北京: 中国地质大学. 1-78.
[34] Xiao Xiao. 2015. The Research of Geochemical and Formation Background of Intermediate-Acid Intrusive Rocks in Renacuo Area, Gaize, Tibet(MHA)(Master's Thesis). Beijing: China University of Geosciences. 1-78.
[35] 张璋, 耿全如, 彭智敏等. 2011. 班公湖-怒江成矿带西段材玛花岗岩岩体岩石地球化学及年代学. 沉积与特提斯地质,31 (4): 86-96.
[36] Zhang Zhang, Geng Quanru, Peng Zhimin et al. 2011. Geochemistry and geochronology of the Caima granites in the western part of the Bangong Lake-Nujiang metallogenic zone, Xizang. Sedimentary Geology and Tethyan Geology, 31 (4): 86-96.
[37] Allègre C J, Courtillot V, Tapponnier P et al. 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 307 (5946): 17-22.
[38] Dewey J F, Shackleton R M, Chang C et al. 1988. The tectonic evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 327 (1594): 379-413.
[39] Fan J J, Li C, Xie C M et al. 2014. Petrology, geochemistry, and geochronology of the Zhonggang ocean island, northern Tibet: Implications for the evolution of the Banggongco-Nujiang oceanic arm of the Neo-Tethys. International Geology Review, 56 (12): 1504-1520.
[40] Fan J J, Li C, Xie C M et al. 2015a.Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet: Constraints on the timing of closure of the Banggong-Nujiang ocean. Lithos,227 : 148-160.
[41] Fan J J, Li C, Xie C M et al. 2015b.The evolution of the Bangong-Nujiang Neo-Tethys ocean: Evidence from zircon U-Pb and Lu-Hf isotopic analyses of Early Cretaceous oceanic islands and ophiolites. Tectonophysics,665 : 27-40.
[42] Girardeau J, Marcoux J, Allègre C J et al. 1984. Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet. Nature, 307 (5946): 27-31.
[43] Guynn J H, Kapp P, Pullen A et al. 2006. Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 34 (6): 505-508.
[44] Kapp P, Murphy M A, Yin A et al. 2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 22 (4): 3-23.
[45] Kapp P, Yin A, Harrison T M et al. 2005. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geological Society of America Bulletin,117 (7-8): 865-878.
[46] Leier A L, Decelles P G, Kapp P et al. 2007. Lower Cretaceous strata in the Lhasa terrane, Tibet, with implications for understanding the early tectonic history of the Tibetan Plateau. Journal of Sedimentary Research, 77 (10): 809-825.
[47] Li J X, Qin K Z, Li G M et al. 2013. Petrogenesis of ore-bearing porphyries from the Duolong porphyry Cu-Au deposit, central Tibet: Evidence from U-Pb geochronology, petrochemistry and Sr-Nd-Hf-O isotope characteristics. Lithos, 160 - 161 : 216-227.
[48] Li J X, Qin K Z, Li G M et al. 2014a. Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate-felsic intrusions in central Tibet: Petrogenetic and tectonic implications. Lithos, 198 - 199 : 77-91.
[49] Li S M, Zhu D C, Wang Q et al. 2014b. Northward subduction of Bangong-Nujiang Tethys: Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet. Lithos,205 : 284-297.
[50] Liu D L, Huang Q S, Fan S Q et al. 2014. Subduction of the Bangong-Nujiang ocean: Constraints from granites in the Bangong Co area, Tibet. Geological Journal, 49 (2): 188-206.
[51] Pan G T, Wang L Q, Li R S et al. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences,53 : 3-14.
[52] Pierce J A and Deng W M. 1988. The ophiolites of the Tibetan geotraverse, Lhasa to Golmud(1985)and Lhasa to Kathmandu(1986). Philosophical Transactions of the Royal Society of London.Series A, Mathematical and Physical Sciences, 327 (1594): 215-238.
[53] Sengör A M C. 1990. Plate tectonics and orogenic research after 25 years: A Tethyan perspective. Earth-Science Reviews,27 (1-2): 1-201.
[54] Xu R H, Schrer U, Allègre C J. 1985. Magmatism and metamorphism in the Lhasa block(Tibet): A geochronological study. The Journal of Geology, 93 (1): 41-57.
[55] Yin A and Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences,28 : 211-280.
[56] Zhang K J, Zhang Y X, Tang X C et al. 2012. Late Mesozoic tectonic evolution and growth of the Tibetan Plateau prior to the Indo-Asian collision. Earth-Science Reviews,114 (3-4): 236-249.
[57] Zhu D C, Mo X X, Niu Y L et al. 2009. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology,268 (3-4): 298-312.
[58] Zhu D C, Zhao Z D, Niu Y L et al. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23 (4): 1429-1454 .
Structural deformation features of Jurassic Sewa Formation in the southern Qiangtang terrane of Tibet and its tectonic significance

Cui Yuliang1, 1, Wang Genhou2 , Lang Xinxin3, Li Dian2    
1. Beijing Institute of Exploration Engineering, Beijing 100083;
2. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083;
3. Inner Mongolia No.10 Institute of Geology and Mineral Exploration and Development, Chifeng, Inner Mongolia 024005
Abstract: The evolution of the Bangong Co-Nujiang ocean has attracted much more attention all the time. There are many different opinions about its subduction polarity, and most of the predecessors discussed it from petrology, geochemistry and other aspects, while lack of the researches of tectonic deformation. In this paper, guided by the structural analysis theory, the works such as field mapping at a large scale and tectonic measured section are done to study the structural style and deformation phases of the Sewa Formation in the research area. Comprehensive studies showed that the Jurassic Sewa Formation of the two areas both develops tight three-level complex fold and superimposed gentle-open fold in late period. The earlier fold axis and slaty cleavage are nearly E-W trending, which is product of S-N trending compression. In Renacuo region, there is angular unconformity between the Early Cretaceous volcanic rock of Meiriqiecuo Formation and Jurassic Sewa Formation which has deformed, and tight fold tectonic style of Sewa Formation didn't form in volcanic rock of Meiriqiecuo Formation, which can infer tight fold formed before the Early Cretaceous. Combined with tectonic background in the study area, we can infer that early tight three-level complex fold of Jurassic Sewa Formation is the product of northward subduction of Bangong Co-Nujiang ocean in the study area, and the superimposed gentle-open fold at late stage is related to the collision between Southern Qiangtang block and Lhasa block.
Key words: Southern Qiangtang terrane    Bangong Co-Nujiang    Jurassic stratum    Complex fold