文章快速检索     高级检索
  北京化工大学学报(自然科学版)  2020, Vol. 47 Issue (1): 113-117   DOI: 10.13543/j.bhxbzr.2020.01.018
0

引用本文  

默秋叶, 王利. 基于Haar小波的非线性随机Ito-Volterra积分方程的数值解[J]. 北京化工大学学报(自然科学版), 2020, 47(1): 113-117. DOI: 10.13543/j.bhxbzr.2020.01.018.
MO QiuYe, WANG Li. Haar wavelets for the numerical solution of nonlinear stochastic ito-volterra integral equations[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2020, 47(1): 113-117. DOI: 10.13543/j.bhxbzr.2020.01.018.

第一作者

默秋叶, 女, 1994年生, 硕士生.

通信联系人

王利, E-mail: 2013016184@mail.buct.edu.cn

文章历史

收稿日期:2019-06-27
基于Haar小波的非线性随机Ito-Volterra积分方程的数值解
默秋叶 , 王利     
北京化工大学 数理学院, 北京 100029
摘要:提出一种非线性随机Ito-Volterra积分方程的数值解方法。首先了解Haar小波的构造,然后利用Haar小波的随机积分算子矩阵将目标方程转化为非线性代数方程,从而得到方程的数值解,最后讨论了目标方法的误差分析。
关键词非线性随机Ito-Volterra积分方程    Haar小波    随机积分算子矩阵    
Haar wavelets for the numerical solution of nonlinear stochastic Ito-Volterra integral equations
MO QiuYe , WANG Li     
College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
Abstract: This paper introduces a calculation method for solving nonlinear stochastic Ito-Volterra integral equations. Haar wavelets are first introduced, and then the target equation is transformed into a nonlinear algebraic equation by using the Haar wavelets stochastic integration operational matrix, so that the numerical solution of the equation can be obtained. Finally, we provide an error analysis of the proposed method.
Key words: nonlinear stochastic Ito-Volterra integral equations    Haar wavelets    stochastic integration operational matrix    
引言

随机函数方程在物理、金融、生物等领域的应用逐渐增多,因此对于随机方程的研究非常有必要。由于这类方程的精确解在许多情况下是无法得到的,因此通过一些数值方法来求取近似解是常用且有效的方法。许多学者求解这类方程用不同的函数或多项式,如block-pulse函数[1]、泰勒级数[2]、欧拉多项式[3]、伯努利多项式[4]和切比雪夫小波[5-6]等。Fakhrodin[7]研究了利用Haar小波求解线性随机Ito-Volterra积分方程,但并未给出非线性情况下的数值解。本文在文献[7]基础上,考虑用Haar小波来解非线性随机Ito-Volterra积分方程, 并分析了基于Haar小波的数值解和精确解的误差。

1 Haar小波 1.1 Haar小波结构

定义1[7-8]  在支撑域为t∈[0, 1)的范围内,Haar函数的定义为

$ \psi (t) = \left\{ {\begin{array}{*{20}{l}} {1, }&{0 \le t < \frac{1}{2}}\\ { - 1, }&{\frac{1}{2} \le t < 1} \end{array}} \right. $

在多分辨率为2j的系统中,Haar小波构成一组支撑为$\left[{\frac{k}{{{2^j}}}, \frac{{k + 1}}{{{2^j}}}} \right)$的正交小波族

$ {h_n}(t) = {2^{\frac{1}{2}}}\psi \left( {{2^j}t - k} \right), {h_0}(t) = 1 $

式中,$j \ge 0, 0 \le k < {2^j}, n = {2^j} + k, n, j, k \in \mathit{\boldsymbol{Z}}$,且有$\int_0^1 {{h_i}} (t){h_j}(t){\rm{d}}t = {{\rm{ \mathit{ δ} }}_{ij}}$,其中${{\rm{ \mathit{ δ} }}_{ij}} = \left\{ {\begin{array}{*{20}{l}} {1, }&{i = j}\\ {0, }&{i \ne j} \end{array}} \right.$为克罗内克函数。

在区间[0, 1)上定义的平方可积函数f(t)可被Haar小波展开为

$ f(t) = \sum\limits_{i = 0}^\infty {{f_i}} {h_i}(t) $ (1)

式中,$i = {2^j} + k, j \ge 0, 0 \le k < {2^j}, j, k \in {\bf{N}}$,且有$\int_0^1 f (t){h_i}(t){\rm{d}}t$,其中i=0, 2j+kj≥0,0≤k < 2jj, kΝ

式(1)中的无限序列可被截断为m=2J(J为给定的小波分辨率水平),即

$ f(t) \simeq \sum\limits_{i = 0}^{m - 1} {{f_i}} {h_i}(t) $ (2)

式中,i=0, 2j+k,0≤jJ-1,0≤k < 2j

式(2)用向量形式可表示为

$ f(t) \simeq {\mathit{\boldsymbol{F}}^{\rm{T}}}\mathit{\boldsymbol{H}}(t) = {\mathit{\boldsymbol{H}}^{\rm{T}}}(t)\mathit{\boldsymbol{F}} $

式中FH(t)分别为Haar系数和Haar小波向量,且有

$ \left\{ {\begin{array}{*{20}{l}} {\mathit{\boldsymbol{F}} = {{\left[ {{f_0}(t), {f_1}(t), \cdots , {f_{m - 1}}(t)} \right]}^{\rm{T}}}}\\ {\mathit{\boldsymbol{H}}(t) = {{\left[ {{h_0}(t), {h_1}(t), \cdots , {h_{m - 1}}(t)} \right]}^{\rm{T}}}} \end{array}} \right. $ (3)

k(s, t)∈L2([0, 1)×[0, 1)),类似地k(s, t)可用Haar小波展开为

$ k(s, t) \simeq {\mathit{\boldsymbol{H}}^{\rm{T}}}(s)\mathit{\boldsymbol{KH}}(t) = {\mathit{\boldsymbol{H}}^{\rm{T}}}(t){\mathit{\boldsymbol{K}}^{\rm{T}}}\mathit{\boldsymbol{H}}(s) $

式中Km×m的Haar小波系数矩阵,其il列元素为${k_{il}} = \int_0^1 {\int_0^1 k } (s, t){\mathit{\boldsymbol{H}}_i}(t){\mathit{\boldsymbol{H}}_l}(s){\rm{d}}t{\rm{d}}s, i, l = 1, 2, \cdots, m$

1.2 block-pulse函数

定义2[1, 9]  定义m个区间的block-pulse函数为

$ \left\{ \begin{array}{l} {\phi _i}(t){\rm{ = }}\left\{ {\begin{array}{*{20}{l}} {1, }&{(i - 1)h \le t < ih}\\ {0, }&{其他{\rm{ }}} \end{array}} \right.\\ {\phi _j}(t) = \left\{ {\begin{array}{*{20}{l}} {1, }&{(j - 1)h \le t < jh}\\ {0, }&{{\rm{ 其他 }}} \end{array}} \right. \end{array} \right. $ (4)

式中,$t \in [0, T), i, j = 1, 2, \cdots, m, h = \frac{T}{m}$,并且${\phi _i}(t)$${\phi _j}(t)$是不相交的,即

$ {\phi _i}(t){\phi _j}(t) = {\delta _{ij}}{\phi _i}(t), i, j = 1, 2, \cdots , m $ (5)

式(5)中,${\phi _i}(t)$${\phi _j}(t)$是正交的,即

$ \int_0^T {{\phi _i}} (t){\phi _j}(t){\rm{d}}t = h{\delta _{ij}}, i, j = 1, 2, \cdots , m $

定义2中,若m→∞,则block-pulse函数集$\left\{ {{\phi _i}(t)} \right\}_{i = 1}^\infty $是完备的,所以任意的fL2([0, T))可被block-pulse函数序列展开为

$ f(t) \simeq \sum\limits_{i = 1}^m {{f_i}} {\phi _i}(t) = {\mathit{\boldsymbol{F}}^{\rm{T}}}\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}(t) = {\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}^{\rm{T}}}(t)\mathit{\boldsymbol{F}} $

式中

$ \left\{ {\begin{array}{*{20}{l}} {{f_i} = \frac{1}{h}\int_0^T {{\phi _i}} (t)f(t){\rm{d}}t, i = 1, 2, \cdots , m}\\ {\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}(t) = {{\left[ {{\phi _1}(t), {\phi _2}(t), \cdots , {\phi _m}(t)} \right]}^{\rm{T}}}}\\ {\mathit{\boldsymbol{F}} = {{\left[ {{f_1}, {f_2}, \cdots , {f_m}} \right]}^{\rm{T}}}} \end{array}} \right. $ (6)

对任意的m维列向量F,很容易得到

$ \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}(t){\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}^{\rm{T}}}(t)\mathit{\boldsymbol{F}} = \mathit{\boldsymbol{\tilde F \boldsymbol{\varPhi} }}(t) $ (7)

式中,$\mathit{\boldsymbol{\tilde F}} = {\mathop{\rm diag}\nolimits} (\mathit{\boldsymbol{F}})$m×m矩阵。对任意的m×m矩阵A

$ {\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}^{\rm{T}}}(t)\mathit{\boldsymbol{A \boldsymbol{\varPhi} }}(t) = {{\mathit{\boldsymbol{\tilde A}}}^{\rm{T}}}\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}(t) $ (8)

式中$\mathit{\boldsymbol{\tilde A}} = {\mathop{\rm diag}\nolimits} (\mathit{\boldsymbol{A}})$m维列向量。

1.3 Haar小波和block-pulse函数关系

令block-pulse函数中的T=1,则会得到Haar小波和block-pulse函数关系。

定义3[7]  因H(t)和Φ(t)分别为m维Haar小波向量和block-pulse函数向量,相应地,向量H(t)可用向量Φ(t)表示为

$ \mathit{\boldsymbol{H}}(t) = \mathit{\boldsymbol{Q \boldsymbol{\varPhi} }}(t), m = {2^j} $

式中,Qm×m矩阵,其il列元素为

$ {Q_{it}} = {2^{\frac{1}{2}}}{h_{i - 1}}\left( {\frac{{2l - 1}}{{2m}}} \right) $

式中i, l=1, 2,…, mi-1=2j+k,0≤k < 2j

由式(7)、(8)和定义3很容易得到引理1。

引理1[10]  对任意的m维列向量F,有

$ \mathit{\boldsymbol{H}}(t){\mathit{\boldsymbol{H}}^{\rm{T}}}(t)\mathit{\boldsymbol{F}} = \mathit{\boldsymbol{\tilde FH}}(t) $ (9)

式中$\mathit{\boldsymbol{\tilde F}} = \mathit{\boldsymbol{Q}}\mathit{\boldsymbol{\overline F}} {\mathit{\boldsymbol{Q}}^{ - 1}}$m×m矩阵,$\mathit{\boldsymbol{\overline F}} = {\mathop{\rm diag}\nolimits} \left({{\mathit{\boldsymbol{Q}}^{\rm{T}}}\mathit{\boldsymbol{F}}} \right)$。对任意的m×m矩阵A

$ {\mathit{\boldsymbol{H}}^{\rm{T}}}(t)\mathit{\boldsymbol{AH}}(t) = {{\mathit{\boldsymbol{\tilde A}}}^{\rm{T}}}\mathit{\boldsymbol{H}}(t) $ (10)

式中${{\mathit{\boldsymbol{\tilde A}}}^{\rm{T}}} = \mathit{\boldsymbol{D}}{\mathit{\boldsymbol{Q}}^{ - 1}}, \mathit{\boldsymbol{D}} = {\mathop{\rm diag}\nolimits} \left({{\mathit{\boldsymbol{Q}}^{\rm{T}}}\mathit{\boldsymbol{AQ}}} \right)$

2 随机积分算子矩阵

与式(6)中Φ(t)有关的积分可表示为[1]

$ \int_0^t \mathit{\boldsymbol{ \boldsymbol{\varPhi} }} (s){\rm{d}}s \simeq \mathit{\boldsymbol{P \boldsymbol{\varPhi} }}(t) $ (11)

式中Pm×m维block-pulse函数的积分算子矩阵,并且有

$ \mathit{\boldsymbol{P}} = \frac{h}{2}{\left[ {\begin{array}{*{20}{c}} 1&2&2& \cdots &2\\ 0&1&2& \cdots &2\\ 0&0&1& \vdots & \vdots \\ \vdots & \vdots & \vdots & \ddots &2\\ 0&0&0& \cdots &1 \end{array}} \right]_{m \times m}} $

Φ(t)有关的Ito积分可表示为[1]

$ \int_0^t \mathit{\boldsymbol{ \boldsymbol{\varPhi} }} (s){\rm{d}}B(s) \simeq {\mathit{\boldsymbol{P}}_s}\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}(t) $ (12)

式中B(s)是布朗运动,Ps是block-pulse函数的随机积分算子矩阵,且有

$ {\mathit{\boldsymbol{P}}_s} = {\left[ {\begin{array}{*{20}{c}} {B\left( {\frac{h}{2}} \right)}&{B(h)}&{B(h)}& \cdots &{B(h)}\\ 0&{B\left( {\frac{{3h}}{2}} \right) - B(h)}&{B(2h) - B(h)}& \cdots &{B(2h) - B(h)}\\ 0&0&{B\left( {\frac{{5h}}{2}} \right) - B(2h)}& \cdots &{B(3h) - B(2h)}\\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0&0&0& \cdots &{B\left( {\frac{{(2m - 1)h}}{2}} \right) - B((m - 1)h)} \end{array}} \right]_{m \times m}} $

在block-pulse函数的积分算子矩阵基础上,利用定义3可求得Haar小波的算子矩阵。

式(3)中Haar小波向量H(t)的积分可表示为

$ \begin{array}{l} \int_0^t \mathit{\boldsymbol{H}} (s){\rm{d}}s \simeq \int_0^t \mathit{\boldsymbol{Q}} \mathit{\boldsymbol{ \boldsymbol{\varPhi} }}(s){\rm{d}}s = \mathit{\boldsymbol{Q}}\int_0^t \mathit{\boldsymbol{ \boldsymbol{\varPhi} }} (s){\rm{d}}s \simeq \\ \mathit{\boldsymbol{QP \boldsymbol{\varPhi} }}(t) = \mathit{\boldsymbol{QP}}{\mathit{\boldsymbol{Q}}^{ - 1}}\mathit{\boldsymbol{H}}(t) = \mathit{\boldsymbol{AH}}(t) \end{array} $ (13)

式中Λ=QPQ-1为Haar小波的积分算子矩阵。

同理,H(t)的Ito积分可以表示为

$ \int_0^t \mathit{\boldsymbol{H}} (s){\rm{d}}B(s) \simeq \mathit{\boldsymbol{Q}}{\mathit{\boldsymbol{P}}_\mathit{s}}{\mathit{\boldsymbol{Q}}^{ - 1}}\mathit{\boldsymbol{H}}(t) = {\mathit{\boldsymbol{ \boldsymbol{\varLambda} }}_\mathit{s}}\mathit{\boldsymbol{H}}(t) $ (14)

式中${\mathit{\boldsymbol{ \boldsymbol{\varLambda} }}_s} = \mathit{\boldsymbol{Q}}{\mathit{\boldsymbol{P}}_s}{\mathit{\boldsymbol{Q}}^{ - 1}}$为Haar小波的随机积分算子矩阵。

3 方程的转化和求解
$ \begin{array}{l} X(t) = f(t) + \int_0^t {{k_1}} (s, t){N_1}(s, X(s)){\rm{d}}s + \\ \int_0^t {{k_2}} (s, t){N_2}(s, X(s)){\rm{d}}B(s), t \in [0, 1] \end{array} $ (15)

式(15)为非线性随机Ito-Volterra积分方程。式中,X(t)、f(t)、k1(s, t)、k2(s, t)、N1(s, X(s))和N2(s, X(s))是定义在概率空间(Ω, F, P)上的随机过程,且X(t)未知。

利用Haar小波随机积分算子矩阵求解式(15)。首先令

$ \left\{ {\begin{array}{*{20}{l}} {{u_1}(t) = {N_1}(t, X(t))}\\ {{u_2}(t) = {N_2}(t, X(t))} \end{array}} \right. $ (16)

由式(15)和式(16),可得

$ \left\{ {\begin{array}{*{20}{c}} {{u_1}(t) = {N_1}\left( {t, f(t) + \int_0^t {{k_1}} (s, t){u_1}(s){\rm{d}}s + } \right.}\\ {\left. {\int_0^t {{k_2}} (s, t){u_2}(s){\rm{d}}B(s)} \right)}\\ {{u_2}(t) = {N_2}\left( {t, f(t) + \int_0^t {{k_1}} (s, t){u_1}(s){\rm{d}}s + } \right.}\\ {\left. {\int_0^t {{k_2}} (s, t){u_2}(s){\rm{d}}B(s)} \right)} \end{array}} \right. $ (17)

然后将X(t)、f(t)、k1(s, t)、k2(s, t)、u1(t)和u2(t)近似用Haar小波向量表示为

$ \left\{ {\begin{array}{*{20}{l}} {X(t) \simeq {\mathit{\boldsymbol{X}}^{\rm{T}}}\mathit{\boldsymbol{H}}(t) = {\mathit{\boldsymbol{H}}^{\rm{T}}}(t)\mathit{\boldsymbol{X}}}\\ {f(t) \simeq {\mathit{\boldsymbol{F}}^{\rm{T}}}\mathit{\boldsymbol{H}}(t) = {\mathit{\boldsymbol{H}}^{\rm{T}}}(t)\mathit{\boldsymbol{F}}}\\ {{k_1}(s, t) \simeq {\mathit{\boldsymbol{H}}^{\rm{T}}}(s){\mathit{\boldsymbol{K}}_1}\mathit{\boldsymbol{H}}(t) = {\mathit{\boldsymbol{H}}^{\rm{T}}}(t)\mathit{\boldsymbol{K}}_1^{\rm{T}}\mathit{\boldsymbol{H}}(s)}\\ {{k_2}(s, t) \simeq {\mathit{\boldsymbol{H}}^{\rm{T}}}(s){\mathit{\boldsymbol{K}}_2}\mathit{\boldsymbol{H}}(t) = {\mathit{\boldsymbol{H}}^{\rm{T}}}(t)\mathit{\boldsymbol{K}}_2^{\rm{T}}\mathit{\boldsymbol{H}}(s)}\\ {{u_1}(t) \simeq \mathit{\boldsymbol{U}}_1^{\rm{T}}\mathit{\boldsymbol{H}}(t) = {\mathit{\boldsymbol{H}}^{\rm{T}}}(t){\mathit{\boldsymbol{U}}_1}}\\ {{u_2}(t) \simeq \mathit{\boldsymbol{U}}_2^{\rm{T}}\mathit{\boldsymbol{H}}(t) = {\mathit{\boldsymbol{H}}^{\rm{T}}}(t){\mathit{\boldsymbol{U}}_2}} \end{array}} \right. $ (18)

将式(18)的近似趋近代入式(17)可得

$ \left\{ \begin{array}{l} {\mathit{\boldsymbol{H}}^{\rm{T}}}(t){\mathit{\boldsymbol{U}}_1} = {N_1}\left( {t, {\mathit{\boldsymbol{H}}^{\rm{T}}}(t)\mathit{\boldsymbol{F}} + } \right.\\ \;\;\;\;\int_0^t {{\mathit{\boldsymbol{H}}^{\rm{T}}}} (t)\mathit{\boldsymbol{K}}_1^{\rm{T}}\mathit{\boldsymbol{H}}(s){\mathit{\boldsymbol{H}}^{\rm{T}}}(s){\mathit{\boldsymbol{U}}_1}{\rm{d}}s + \\ \;\;\;\;\left. {\int_0^t {{\mathit{\boldsymbol{H}}^{\rm{T}}}} (t)\mathit{\boldsymbol{K}}_2^{\rm{T}}\mathit{\boldsymbol{H}}(s){\mathit{\boldsymbol{H}}^{\rm{T}}}(s){\mathit{\boldsymbol{U}}_2}{\rm{d}}B(\mathit{s})} \right)\\ {\mathit{\boldsymbol{H}}^{\rm{T}}}(t){\mathit{\boldsymbol{U}}_2} = {N_2}\left( {t, {\mathit{\boldsymbol{H}}^{\rm{T}}}(t)\mathit{\boldsymbol{F}} + } \right.\\ \;\;\;\;\int_0^t {{\mathit{\boldsymbol{H}}^{\rm{T}}}} (t)\mathit{\boldsymbol{K}}_1^{\rm{T}}\mathit{\boldsymbol{H}}(s){\mathit{\boldsymbol{H}}^{\rm{T}}}(s){\mathit{\boldsymbol{U}}_1}{\rm{d}}s + \\ \left. {\;\;\;\;\int_0^t {{\mathit{\boldsymbol{H}}^{\rm{T}}}} (t)\mathit{\boldsymbol{K}}_2^{\rm{T}}\mathit{\boldsymbol{H}}(s){\mathit{\boldsymbol{H}}^{\rm{T}}}(s){\mathit{\boldsymbol{U}}_2}{\rm{d}}\mathit{B}(s)} \right) \end{array} \right. $ (19)

通过式(8)、(9)、(13)和(14),式(19)可化为

$ \left\{ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{H}}^{\rm{T}}}(t){\mathit{\boldsymbol{U}}_1} = {N_1}\left( {t, {\mathit{\boldsymbol{H}}^{\rm{T}}}(t)\mathit{\boldsymbol{F}} + \mathit{\boldsymbol{\tilde V}}_1^{\rm{T}}\mathit{\boldsymbol{H}}(t) + \mathit{\boldsymbol{\tilde V}}_2^{\rm{T}}\mathit{\boldsymbol{H}}(t)} \right)}\\ {{\mathit{\boldsymbol{H}}^{\rm{T}}}(t){\mathit{\boldsymbol{U}}_2} = {N_2}\left( {t, {\mathit{\boldsymbol{H}}^{\rm{T}}}(t)\mathit{\boldsymbol{F}} + \mathit{\boldsymbol{\tilde V}}_1^{\rm{T}}\mathit{\boldsymbol{H}}(t) + \mathit{\boldsymbol{\tilde V}}_2^{\rm{T}}\mathit{\boldsymbol{H}}(t)} \right)} \end{array}} \right. $

式中

$ \begin{array}{l} \mathit{\boldsymbol{\tilde V}}_1^{\rm{T}} = {\mathit{\boldsymbol{D}}_1}{\mathit{\boldsymbol{Q}}^{ - 1}},{\mathit{\boldsymbol{D}}_1} = {\mathop{\rm diag}\nolimits} \left( {{\mathit{\boldsymbol{Q}}^{\rm{T}}}\mathit{\boldsymbol{K}}_1^{\rm{T}}{{\mathit{\boldsymbol{\tilde U}}}_1}\mathit{\boldsymbol{ \boldsymbol{\varLambda} Q}}} \right)\\ \mathit{\boldsymbol{\tilde V}}_2^{\rm{T}} = {\mathit{\boldsymbol{D}}_2}{\mathit{\boldsymbol{Q}}^{ - 1}},{\mathit{\boldsymbol{D}}_2} = {\mathop{\rm diag}\nolimits} \left( {{\mathit{\boldsymbol{Q}}^{\rm{T}}}\mathit{\boldsymbol{K}}_2^{\rm{T}}{{\mathit{\boldsymbol{\tilde U}}}_2}\mathit{\boldsymbol{A}},\mathit{\boldsymbol{Q}}} \right)\\ {{\mathit{\boldsymbol{\tilde U}}}_i} = \mathit{\boldsymbol{Q}}{\mathop{\rm diag}\nolimits} \left( {{\mathit{\boldsymbol{Q}}^{ - 1}}{\mathit{\boldsymbol{U}}_i}} \right){\mathit{\boldsymbol{Q}}^{ - 1}},i = 1,2 \end{array} $

给出m个牛顿cotes节点${t_i} = \frac{{2i + 1}}{{2m}}$i=0, 1, …, m-1,则有

$ \left\{ \begin{array}{l} {\mathit{\boldsymbol{H}}^{\rm{T}}}\left( {{t_i}} \right){\mathit{\boldsymbol{U}}_1} = {N_1}\left( {{t_i}, {\mathit{\boldsymbol{H}}^{\rm{T}}}\left( {{t_i}} \right)\mathit{\boldsymbol{F}} + \mathit{\boldsymbol{\widetilde V}}_1^{\rm{T}}\mathit{\boldsymbol{H}}\left( {{t_i}} \right) + \mathit{\boldsymbol{\tilde V}}_2^{\rm{T}}\mathit{\boldsymbol{H}}\left( {{t_i}} \right)} \right)\\ {\mathit{\boldsymbol{H}}^{\rm{T}}}\left( {{t_i}} \right){\mathit{\boldsymbol{U}}_2} = {N_2}\left( {{t_i}, {\mathit{\boldsymbol{H}}^{\rm{T}}}\left( {{t_i}} \right)\mathit{\boldsymbol{F}} + \mathit{\boldsymbol{\widetilde V}}_1^{\rm{T}}\mathit{\boldsymbol{H}}\left( {{t_i}} \right) + } \right.\left. {\mathit{\boldsymbol{\widetilde V}}_2^{\rm{T}}\mathit{\boldsymbol{H}}\left( {{t_i}} \right)} \right) \end{array} \right. $ (20)

式(20)给出了一个有2m个代数方程的非线性系统,每个代数方程都有同样数量的未知系数,这样就可以通过牛顿迭代方法得到U1U2的分量,进而可得到式(15)的近似解为

$ {\mathit{\boldsymbol{X}}^{\rm{T}}}\mathit{\boldsymbol{H}}(t) \simeq {\mathit{\boldsymbol{F}}^{\rm{T}}}\mathit{\boldsymbol{H}}(t) + \mathit{\boldsymbol{\widetilde V}}_1^{\rm{T}}\mathit{\boldsymbol{H}}(t) + \mathit{\boldsymbol{\widetilde V}}_2^{\rm{T}}\mathit{\boldsymbol{H}}(t) $

$ {\mathit{\boldsymbol{X}}^{\rm{T}}} \simeq {\mathit{\boldsymbol{F}}^{\rm{T}}} + \mathit{\boldsymbol{\widetilde V}}_1^{\rm{T}} + \mathit{\boldsymbol{\widetilde V}}_2^{\rm{T}} $ (21)
4 误差分析

对第3节得到的目标方程的求解方法进行误差分析。将Xm(t)记为由式(21)得到的X(t)的近似解,由于函数的精确解未知,所以利用误差估计em(t)=X(t)-Xm(t)来衡量近似解的优劣,并定义||X(t)||=sup|X(t)|。

定理1[7]  假设f(t)和k(s, t)是足够光滑的函数,$\hat f(t)$$\hat k(\mathit{s, }t)$分别是f(t)和k(s, t)由Haar小波函数得到的近似估计,则f(t)与$\hat f(t)$k(s, t)与$\hat k(\mathit{s, }t)$的误差边界为

$ \left\{ {\begin{array}{*{20}{l}} {f(t) - \hat f(t) = O\left( {{m^{ - 1}}} \right), }&{t \in [0, 1]}\\ {k(s, t) - \hat k(s, t) = 0\left( {{m^{ - 1}}} \right), }&{(s, t) \in [0, 1] \times [0, 1]} \end{array}} \right. $ (22)

定理2  假设X(t)和Xm(t)分别为式(15)的精确解和由Haar小波得出的近似解,给出以下条件:

①‖X(t)‖≤rt∈[0, 1];

②‖ki(s, t)‖≤Mi,(s, t)∈[0, 1]×[0, 1],i=1, 2;

③ Lipschitz条件

Ni(t, X(t))-Ni(t, Xm(t))‖≤LiX(t)-Xm(t)‖,i=1, 2;

④ 线性增长条件

Ni(t, X(t))‖≤Li(1+‖X(t)‖),i=1, 2;

L1(M1+λ1(m))+‖B(t)‖L2(M2+λ2(m)) < 1。

从而可以得到

$ \left\|e_{m}(t)\right\|=\left\|X(t)-X_{m}(t)\right\|=O\left(m^{-1}\right) $ (23)

式中${\lambda _i}(m) = {{\tilde C}_i}\frac{1}{m}, i = 1, 2, {\rm{ }}{{\tilde C}_i}$为常数。

证明:假设ui(s)和$\hat{u}_{i}(s)$分别是方程(17)的精确值和近似值,则有

$ \left\{ {\begin{array}{*{20}{l}} {{{\hat u}_i}(s) = {{\hat N}_i}\left( {s, {X_m}(s)} \right), }&{i = 1, 2}\\ {u_i^m(s) = {N_i}\left( {s, {X_m}(s)} \right), }&{i = 1, 2} \end{array}} \right. $ (24)

由条件③和定理1可得

$ \begin{array}{l} \left\| {{u_i}(s) - {{\hat u}_i}(s)} \right\| \le \left\| {{u_i}(s) - u_i^m(s)} \right\| + \\ \left\| {u_i^m(s) - {{\hat u}_i}(s)} \right\| \le {L_i}\left\| {{e_m}(s)} \right\| + {\beta _i}(m) \end{array} $

式中,${\beta _i}(m) = {C_i}\frac{1}{m}, i = 1, 2, {C_i}$为常数。进而有

$ \left\{ {\begin{array}{*{20}{c}} {X(t) = f(t) + \int_0^t {{k_1}} (s, t){u_1}(s){\rm{d}}s + }\\ {\int_0^t {{k_2}} (s, t){u_2}(s){\rm{d}}B(s)}\\ {{X_m}(t) = \hat f(t) + \int_0^t {{{\hat k}_1}} (s, t){{\hat u}_1}(s){\rm{d}}s + }\\ {\int_0^t {{{\hat k}_2}} (s, t){{\hat u}_2}(s){\rm{d}}B(s)} \end{array}} \right. $ (25)

由式(25)可得

$ \begin{array}{l} \left\| {X(t) - {X_m}(t)} \right\| \le f(t) - \hat f(t) + {k_1}(s, \\ t){u_1}(s) - {{\hat k}_1}(s, t){{\mathit{\hat u}}_1}(s) + B(t){k_2}(s, t)\\ {u_2}(s) - {{\hat k}_2}(s, t){{\hat u}_2}(s) \end{array} $ (26)

进一步由定理1和条件①、②、④可得

$ \begin{array}{l} \left\| {{k_i}(s, t){u_i}(s) - {{\hat k}_i}(s, t){{\hat u}_i}(s)} \right\| \le \left\| {{k_i}(s, t)} \right\|\\ \left\| {{u_i}(s) - {{\hat u}_i}(s)} \right\| + \left\| {{k_i}(s, t) - {{\hat k}_i}(s, t)} \right\|\left( {{u_i}(s) - } \right.\\ \left. {{{\hat u}_i}(s) + {u_i}(s)} \right) \le \left( {{M_i} + {\lambda _i}(m)} \right){L_i}\left\| {{e_m}(s)} \right\| + \\ \left( {{M_i} + {\lambda _i}(m)} \right){\beta _i}(m)| + {\lambda _i}(m){{\tilde L}_i}(1 + r) \end{array} $ (27)

由式(26)、(27)和条件⑤可得

$ \left\|e_{m}(t)\right\|=\left\|X(t)-X_{m}(t)\right\|=O\left(m^{-1}\right) $

综上,定理2得证。

5 结束语

本文利用Haar小波的算子矩阵和随机算子矩阵求解非线性随机Ito-Volterra方程,得到了数值解方程,然后通过对目标方法的收敛分析和误差分析得出,基于Haar小波的非线性随机Ito-Volterra积分方程的数值解是非常方便和有效的。

参考文献
[1]
MALEKNEJAD K, KHODABIN M, ROSTAMI M. Numerical solution of stochastic Volterra integral equations by a stochastic operational matrix based on block pulse functions[J]. Mathematical & Computer Modelling, 2012, 55(3): 791-800.
[2]
MALEKNEJAD K, AGHAZADEH N. Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method[J]. Applied Mathematics & Computation, 2005, 161(3): 915-922.
[3]
MIRZAEE F, SAMADYAR N, HOSEINI S F. Euler polynomial solutions of nonlinear stochastic Ito-Volterra integral equations[J]. Journal of Computational and Applied Mathematics, 2018, 330: 574-585. DOI:10.1016/j.cam.2017.09.005
[4]
BAZM S. Bernoulli polynomials for the numerical solution of some classes of linear and nonlinear integral equations[J]. Journal of Computational and Applied Mathematics, 2015, 275: 44-60. DOI:10.1016/j.cam.2014.07.018
[5]
BABOLIAN E, FATTAHZADEH F. Numerical computation method in solving integral equations by using Chebyshev wavelet operational matrix of integration[J]. Applied Mathematics & Computation, 2007, 188(1): 1016-1022.
[6]
BIAZAR J, EBRAHIMI H. Chebyshev wavelets approach for nonlinear systems of Volterra integral equations[J]. Computers & Mathematics with Applications, 2012, 63(3): 608-616.
[7]
FAKHRODIN M. Numerical solution of stochastic Ito-Volterra integral equations using Haar wavelets[J]. Numerical Mathematics:Theory, Methods and Applications, 2016, 9(3): 416-431. DOI:10.4208/nmtma.2016.m1425
[8]
刘明才. 小波分析及其应用[M]. 北京: 清华大学出版社, 2013.
LIU M C. Wavelet analysis and it's applications[M]. Beijing: Tsinghua University Press, 2013. (in Chinese)
[9]
MOHAMMADI F. A wavelet-based computational method for solving stochastic Itô-Volterra integral equations[J]. Journal of Computational Physics, 2015, 298: 254-265. DOI:10.1016/j.jcp.2015.05.051
[10]
LEPIK U. Haar wavelet method for nonlinear integro-differential equations[J]. Applied Mathematics & Computation, 2006, 176(1): 324-333.