文章快速检索     高级检索
  北京化工大学学报(自然科学版)  2019, Vol. 46 Issue (5): 118-122   DOI: 10.13543/j.bhxbzr.2019.05.018
0

引用本文  

赵梅, 兰光强. 随机时滞微分方程的随机线性θ方法的均方指数稳定性[J]. 北京化工大学学报(自然科学版), 2019, 46(5): 118-122. DOI: 10.13543/j.bhxbzr.2019.05.018.
ZHAO Mei, LAN GuangQiang. Mean square exponential stability of the stochastic linear theta method for stochastic delay differential equations[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2019, 46(5): 118-122. DOI: 10.13543/j.bhxbzr.2019.05.018.

基金项目

国家自然科学基金(11601025);北京市自然科学基金(1192013)

第一作者

赵梅, 女, 1995年生, 硕士生.

通信联系人

兰光强, E-mail: langq@mail.buct.edu.cn

文章历史

收稿日期:2019-05-21
随机时滞微分方程的随机线性θ方法的均方指数稳定性
赵梅 , 兰光强     
北京化工大学 理学院, 北京 100029
摘要:给出了随机时滞微分方程随机线性θ方法的均方指数稳定性的充分条件,证明了当扩散系数高度非线性(即不满足线性增长条件)时,随机线性θ方法仍可能均方指数稳定。本文研究结果在相同条件下加强了Huang在文献[5]中关于随机线性θ方法稳定性的结果。
关键词随机时滞微分方程    随机线性θ方法    均方指数稳定性    
Mean square exponential stability of the stochastic linear theta method for stochastic delay differential equations
ZHAO Mei , LAN GuangQiang     
Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, China
Abstract: In this work, the sufficient conditions for the mean square exponential stability of stochastic linear theta methods for stochastic delay differential equations are given. It is proved that when the diffusion coefficient is highly nonlinear (that is, it does not satisfy the linear growth condition), the stochastic linear theta method still has mean square exponential stability. Finally, the results of a previous paper by Huang (Journal of Computational and Applied Mathematics, 2014, 259:77-86) are strengthened under the same conditions.
Key words: stochastic delay differential equations    stochastic linear θ method    mean square exponential stability    
引言

随机时滞微分方程可用于刻画有重要应用并与时间相关,且依赖于过去状态的过程。近年来,关于这类方程数值解稳定性的研究取得了很大进展。Higham[1]研究了线性随机微分方程对应的随机θ方法的渐近稳定性;Zong等[2]研究了非线性方程对应的随机θ方法的均方指数稳定性;Wu等[3]得到了中立型随机时滞微分方程相应数值解的指数稳定性;Lan等[4]得到了带马氏切换的中立型随机时滞微分方程的数值解指数稳定的充分条件。当扩散系数不满足线性增长条件时,Huang[5]通过研究随机线性θ方法平凡解的渐近稳定性,证明了特定条件下随机线性θ(1/2≤θ≤1)方法的均方渐近稳定性,但是并没有给出收敛速度。

本文研究当扩散系数高度非线性时随机线性θ方法的均方指数稳定性,在给出随机时滞微分方程的随机线性θ方法和两种稳定性定义的基础上,证明了给定条件下随机线性θ方法的均方指数稳定性(从而几乎处处指数稳定),完善了文献[5]中的结论。

1 基本假设和定义

对于一个抽象的全集Ω$ \mathscr{F}$Ω的子集类,P表示概率测度,令(Ω, $\mathscr{F} $, {$\mathscr{F} $t}t≥0, P)是一个完全概率空间,σ代数流{$\mathscr{F} $t}t≥0满足基本条件(即单增、右连续且$\mathscr{F} $0包含所有零测集)。定义期望EΩ上随机变量关于P的积分。W(t)是定义在概率空间上的标准布朗运动。

考虑以下形式的随机时滞微分方程

$ \left\{ \begin{array}{l} {\rm{d}}y(t) = f(t,y(t),y(t - \tau )){\rm{d}}t + \\ \;\;\;\;\;\;g(t,y(t),y(t - \tau )){\rm{d}}W(t),t \ge 0\\ y(t) = \phi (t),\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;t \in \left[ { - \tau ,0} \right] \end{array} \right. $

式中,y(t)、f(t, x, y)、g(t, x, y)是定义在相同概率空间上的随机变量,y(t)是未知函数,t∈[0, T];τ是正常数;ϕ(t)是$\mathscr{F} $0可测的,且满足$\mathop {\sup }\limits_{ - \tau \le t \le 0} E{\left| {\phi \left( t \right)} \right|^2} < \infty $

考虑随机线性θ方法(SLT方法),即划分格子点0=t0 < t1 < t2… < tn < Ttn=Δ为步长。考虑随机线性θ方法的数值迭代格式如下

$ \left\{ \begin{array}{l} {y_{n + 1}} = {y_n} + \theta \mathit{\Delta} f\left( {{t_{n + 1}},{y_{n + 1}},{{\bar y}_{n + 1}}} \right) + \\ \;\;\;\;\;\;(1 - \theta )\mathit{\Delta} f\left( {{t_n},{y_n},{{\bar y}_n}} \right) + g\left( {{t_n},{y_n},{{\bar y}_n}} \right)\mathit{\Delta} {W_n},\;\;\;n \ge 0\\ {y_n} = \phi \left( {{t_n}} \right),\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;n \le 0 \end{array} \right. $ (1)

式中,yn+1y(tn+1)的近似值,yny(tn-τ)的近似值,Δ>0, θ∈[0, 1], ΔWn=W(tn+1)-W(tn)。

对于τ,存在正整数mδ(0<δ≤1),使得τ=(mδ)Δ,所以式(1)中的yn可以线性表示为yn=(1-δ)ynm+δynm+1。显然当δ=0时,随机线性θ方法回归为普通随机θ方法,该方法是随机θ方法的一个推广。

注意到当θ>0时式(1)是隐式方法,为使式(1)有定义,通常需要使系数f满足特定条件(如单边Lipschitz条件)。

定义1  对于式(1)中的随机线性θ方法yn,若存在Δ>0,使得$ \mathop {\lim \;\sup }\limits_{k \to \infty } \frac{{\lg E\left( {{{\left| {{y_n}} \right|}^2}} \right)}}{{k\mathit{\Delta} }} < 0$,则称yn是均方指数稳定的。

定义2  对于式(1)中的随机线性θ方法yn,若存在Δ>0,使得$\mathop {\lim \mathit{E}}\limits_{\mathit{k} \to \infty } \left( {{{\left| {{y_n}} \right|}^2}} \right) = 0 $,则称yn是渐近均方稳定的。

2 主要结果和证明

定理1  假定式(1)有定义,若系数fg满足

$ \begin{array}{l} 2\langle u,f(t,u,v)\rangle + |g(t,u,v){|^2} \le - {C_1}|u{|^2} + {C_2}\\ |v{|^2},{C_1} > {C_2} > 0 \end{array} $ (2)

则当$\frac{1}{2} $< θ≤1时,随机线性θ方法是均方指数稳定的。

证明:定理1的证明分5步进行。

① 方程(1)可变换为

$ \begin{array}{l} {y_{n + 1}} - \theta \mathit{\Delta} f\left( {{t_{n + 1}},{y_{n + 1}},{y_{n + 1}}} \right) = {y_n} - \theta \mathit{\Delta} f\left( {{t_n},{y_n},{{\bar y}_n}} \right) + \\ f\left( {{t_n},{y_n},{{\bar y}_n}} \right)\mathit{\Delta} + g\left( {{t_n},{y_n},{{\bar y}_n}} \right)\mathit{\Delta} {W_n} \end{array} $

Fn=yn-θΔf(tn, yn, yn),则有

$ \begin{array}{l} \begin{array}{*{20}{r}} {{{\left| {{F_{n + 1}}} \right|}^2} = {{\left| {{F_n}} \right|}^2} + |f\left( {{t_n},{y_n},{{\bar y}_n}} \right)\mathit{\Delta} + g\left( {{t_n},{y_n},{{\bar y}_n}} \right)}\\ {{{\left. {\mathit{\Delta} {W_n}} \right|}^2} + 2\left\langle {f\left( {{t_n},{y_n},{{\bar y}_n}} \right)\mathit{\Delta} ,{F_n}} \right\rangle + 2\left\langle {g\left( {{t_n},{y_n},{{\bar y}_n}} \right)\mathit{\Delta} {W_n},} \right.} \end{array}\\ \begin{array}{*{20}{l}} {\left. {{F_n}} \right\rangle = {{\left| {{F_n}} \right|}^2} + {{\left| {f\left( {{t_n},{y_n},{{\bar y}_n}} \right)} \right|}^2}{\mathit{\Delta} ^2} + {{\left| {g\left( {{t_n},{y_n},{{\bar y}_n}} \right)} \right|}^2}\mathit{\Delta} + }\\ {2\left\langle {f\left( {{t_n},{y_n},{{\bar y}_n}} \right)\mathit{\Delta} ,{y_n}} \right\rangle - 2\theta {{\left| {f\left( {{t_n},{y_n},{{\bar y}_n}} \right)} \right|}^2}{\mathit{\Delta} ^2} + {M_n} = } \end{array}\\ \begin{array}{*{20}{l}} {{{\left| {{F_n}} \right|}^2} + (1 - 2\theta ){{\left| {f\left( {{t_n},{y_n},{{\bar y}_n}} \right)} \right|}^2}{\mathit{\Delta} ^2} + {{\left| {g\left( {{t_n},{y_n},{{\bar y}_n}} \right)} \right|}^2}\mathit{\Delta} + }\\ {2\left\langle {f\left( {{t_n},{y_n},{{\bar y}_n}} \right)\mathit{\Delta} ,{y_n}} \right\rangle + {M_n} = {{\left| {{F_n}} \right|}^2} + ((1 - 2\theta )} \end{array}\\ {\left| {f\left( {{t_n},{y_n},{{\bar y}_n}} \right)} \right|^2}\mathit{\Delta} + {\left| {g\left( {{t_n},{y_n},{{\bar y}_n}} \right)} \right|^2} + 2\left\langle {f\left( {{t_n},{y_n},{{\bar y}_n}} \right)} \right.,\\ \left. {\left. {{y_n}} \right\rangle } \right)\mathit{\Delta} + {M_n} \end{array} $ (3)

式(3)中,Mn=|g(tn, yn, yn)|2|ΔWn|2-|g(tn, yn, yn)|2Δ+ 2〈g(tn, yn, yn)ΔWn, Fn〉+2〈f(tn, yn, yn)Δ, g(tn, yn, yn)ΔWn〉为鞅,鞅取期望为0。

② 证明存在0 < C < C1,使得

$ \begin{array}{l} (1 - 2\theta ){\left| {f\left( {{t_n},{y_n},{{\bar y}_n}} \right)} \right|^2}\mathit{\Delta} + {\left| {g\left( {{t_n},{y_n},{{\bar y}_n}} \right)} \right|^2} + 2\\ \left\langle {f\left( {{t_n},{y_n},{{\bar y}_n}} \right),{y_n}} \right\rangle \le - C{\left| {{F_n}} \right|^2} + {C_2}{\left| {{{\bar y}_n}} \right|^2} \end{array} $ (4)

事实上,有

$ \begin{array}{l} \begin{array}{*{20}{c}} {(2\theta - 1){{\left| {f\left( {{t_n},{y_n},{{\bar y}_n}} \right)} \right|}^2}\mathit{\Delta} - C{{\left| {{F_n}} \right|}^2} = (2\theta - 1)}\\ {{{\left| {f\left( {{t_n},{y_n},{{\bar y}_n}} \right)} \right|}^2}\mathit{\Delta} - C\left( {{{\left| {{y_n}} \right|}^2} + {{\left| {\theta \mathit{\Delta} f\left( {{t_n},{y_n},{{\bar y}_n}} \right)} \right|}^2} - } \right.} \end{array}\\ \begin{array}{*{20}{l}} {\left. {2\left\langle {\theta \mathit{\Delta} f\left( {{t_n},{y_n},{{\bar y}_n}} \right),{y_n}} \right\rangle } \right) = \left[ {(2\theta - 1)\mathit{\Delta} - C{\theta ^2}{\mathit{\Delta} ^2}} \right]}\\ {{{\left| {f\left( {{t_n},{y_n},{{\bar y}_n}} \right)} \right|}^2} + 2C\theta \mathit{\Delta} \left\langle {f\left( {{t_n},{y_n},{{\bar y}_n}} \right),{y_n}} \right\rangle - C{{\left| {{y_n}} \right|}^2} = } \end{array}\\ a{\left| {f\left( {{t_n},{y_n},{{\bar y}_n}} \right) + b{y_n}} \right|^2} - \left( {a{b^2} + C} \right){\left| {{y_n}} \right|^2} \end{array} $ (5)

式(5)中,a=(2θ-1)Δ2Δ2, $b = \frac{{C{\theta }\mathit{\Delta} }}{a} $。当 $\frac{1}{2} $ < θ≤1,能取到Δ足够小,使得a足够小且a>0,因此存在a足够小,使得(ab2+C) < C1,从而式(5)可变为

$ \begin{array}{l} (2\theta - 1){\left| {f\left( {{t_n},{y_n},{{\bar y}_n}} \right)} \right|^2}\mathit{\Delta} - C{\left| {{F_n}} \right|^2} \ge - \left( {a{b^2} + } \right.\\ C){\left| {{y_n}} \right|^2} \ge - {C_1}{\left| {{y_n}} \right|^2} \end{array} $

又由式(2)可得

$ \begin{array}{l} (2\theta - 1){\left| {f\left( {{t_n},{y_n},{{\bar y}_n}} \right)} \right|^2}\mathit{\Delta} - C{\left| {{F_n}} \right|^2} \ge 2\left\langle {{y_n},f} \right.\\ \left. {\left( {{t_n},{y_n},{{\bar y}_n}} \right)} \right\rangle + {\left| {g\left( {{t_n},{y_n},{{\bar y}_n}} \right)} \right|^2} - {C_2}{\left| {{{\bar y}_n}} \right|^2} \end{array} $

移项后,式(4)得证。

③ 将式(4)代入式(3),有

$ \begin{array}{l} {\left| {{F_{n + 1}}} \right|^2} \le {\left| {{F_n}} \right|^2} + \left( { - C{{\left| {{F_n}} \right|}^2} + {C_2}{{\left| {{{\bar y}_n}} \right|}^2}} \right)\mathit{\Delta} + \\ {M_n} \le {\left| {{F_n}} \right|^2} - C{\left| {{F_n}} \right|^2}\mathit{\Delta} + {C_2}{\left| {{{\bar y}_n}} \right|^2}\mathit{\Delta} + {M_n} \le (1 - C\mathit{\Delta} )\\ {\left| {{F_n}} \right|^2} + {C_2}{\left| {{{\bar y}_n}} \right|^2}\mathit{\Delta} + {M_n} \end{array} $

且|yn|2δ|yn-m+1|2+(1-δ)|yn-m|2,所以有

$ \begin{array}{l} {\left| {{F_{n + 1}}} \right|^2} \le (1 - C\mathit{\Delta} ){\left| {{F_n}} \right|^2} + {C_2}\mathit{\Delta} \delta {\left| {{y_{n - m + 1}}} \right|^2} + \\ {C_2}\mathit{\Delta} (1 - \delta ){\left| {{y_{n - m}}} \right|^2} + {M_n} \end{array} $

又由于对任意的A>1,都有

$ \begin{array}{l} \begin{array}{*{20}{c}} {{A^{(n + 1)\mathit{\Delta} }}{{\left| {{F_{n + 1}}} \right|}^2} - {A^{n\mathit{\Delta} }}{{\left| {{F_n}} \right|}^2} \le {A^{(n + 1)\mathit{\Delta} }}[(1 - C\mathit{\Delta} )}\\ {\left. {{{\left| {{F_n}} \right|}^2} + {C_2}\mathit{\Delta} \delta {{\left| {{y_{n - m + 1}}} \right|}^2} + {C_2}\mathit{\Delta} (1 - \delta ){{\left| {{y_{n - m}}} \right|}^2} + {M_n}} \right] - } \end{array}\\ \begin{array}{*{20}{l}} {{A^{n\mathit{\Delta} }}{{\left| {{F_n}} \right|}^2} \le {A^{(n + 1)\mathit{\Delta} }}\left( {1 - C\mathit{\Delta} - {A^{ - \mathit{\Delta} }}} \right){{\left| {{F_n}} \right|}^2} + {A^{(n + 1)\mathit{\Delta} }}}\\ {{C_2}\mathit{\Delta} \delta {{\left| {{y_{n - m + 1}}} \right|}^2} + {A^{(n + 1)\mathit{\Delta} }}{C_2}\mathit{\Delta} (1 - \delta ){{\left| {{y_{n - m}}} \right|}^2} + {A^{(n + 1)\mathit{\Delta} }}} \end{array}\\ \begin{array}{*{20}{l}} {{M_n} \le {R_1}{A^{(n + 1)\mathit{\Delta} }}{{\left| {{F_n}} \right|}^2} + {R_2}{A^{(n + 1)\mathit{\Delta} }}{{\left| {{y_{n - m + 1}}} \right|}^2}\mathit{\Delta} + }\\ {{R_3}{A^{(n + 1)\mathit{\Delta} }}{{\left| {{y_{n - m}}} \right|}^2}\mathit{\Delta} + {A^{(n + 1)\mathit{\Delta} }}{M_n}} \end{array} \end{array} $ (6)

式(6)中,R1=1-AΔ, R2=C2δ, R3=C2(1-δ),R2+R3=C2

对式(6)从n=0到n=k-1求和,得

$ \begin{array}{l} {A^{k\mathit{\Delta} }}{\left| {{F_k}} \right|^2} \le {\left| {{F_0}} \right|^2} + {R_1}\sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {\left| {{F_i}} \right|^2} + \\ {R_2}\sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {\left| {{y_{i - m + 1}}} \right|^2}\mathit{\Delta} + {R_3}\sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {\left| {{y_{i - m}}} \right|^2}\mathit{\Delta} + \\ \sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {M_i} \end{array} $ (7)

注意到R1|Δ=0=0,且

$ R_1^\prime (\Delta ) = - C + {A^{ - \mathit{\Delta} }}\ln A $ (8)

当1 < A < eC时,R1′(Δ) < 0,因此当Δ>0时R1 < 0。

Fn=yn-θΔf(tn, yn, yn)两边平方,并应用式(2)得

$ \begin{array}{l} {\left| {{F_i}} \right|^2} = {\left| {{y_i}} \right|^2} + {\theta ^2}{\mathit{\Delta} ^2}{\left| {f\left( {{t_i},{y_i},{{\bar y}_i}} \right)} \right|^2} - 2\theta \mathit{\Delta} \left\langle {f\left( {{t_i},} \right.} \right.\\ \left. {\left. {{y_i},{{\bar y}_i}} \right),{y_i}} \right\rangle \ge {\left| {{y_i}} \right|^2} - 2\theta \mathit{\Delta} \left\langle {f\left( {{t_i},{y_i},{{\bar y}_i}} \right),{y_i}} \right\rangle \ge {\left| {{y_i}} \right|^2} + \\ {C_1}\theta \mathit{\Delta} {\left| {{y_i}} \right|^2} - {C_2}\theta \mathit{\Delta} {\left| {{{\bar y}_i}} \right|^2} \end{array} $ (9)

所以有

$ {R_1}{\left| {{F_i}} \right|^2} \le {R_1}\left( {{{\left| {{y_i}} \right|}^2} + {C_1}\theta \mathit{\Delta} {{\left| {{y_i}} \right|}^2} - {C_2}\theta \mathit{\Delta} {{\left| {{{\bar y}_i}} \right|}^2}} \right) $ (10)

将式(10)代入式(7),有

$ \begin{array}{l} \begin{array}{*{20}{c}} {{A^{k\mathit{\Delta} }}{{\left| {{F_k}} \right|}^2} \le {{\left| {{F_0}} \right|}^2} + {R_1}\sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} \left( {{{\left| {{y_i}} \right|}^2} + {C_1}\theta \mathit{\Delta} } \right.}\\ {\left. {{{\left| {{y_i}} \right|}^2} - {C_2}\theta \mathit{\Delta} {{\left| {{{\bar y}_i}} \right|}^2}} \right) + {R_2}\sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {{\left| {{y_{i - m + 1}}} \right|}^2}\mathit{\Delta} + } \end{array}\\ \begin{array}{*{20}{l}} {{R_3}\sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {{\left| {{y_{i - m}}} \right|}^2}\mathit{\Delta} + \sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {M_i} \le {{\left| {{F_0}} \right|}^2} + }\\ {{R_1}\sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} \left[ {{{\left| {{y_i}} \right|}^2} + {C_1}\theta \mathit{\Delta} {{\left| {{y_i}} \right|}^2} - {C_2}\theta \mathit{\Delta} (\delta } \right.} \end{array}\\ \begin{array}{*{20}{l}} {\left. {\left. {{{\left| {{y_{i - m + 1}}} \right|}^2} + (1 - \delta ){{\left| {{y_{i - m}}} \right|}^2}} \right)} \right] + {R_2}\sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} }\\ {{{\left| {{y_{i - m + 1}}} \right|}^2}\mathit{\Delta} + {R_3}\sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {{\left| {{y_{i - m}}} \right|}^2}\mathit{\Delta} + \sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {M_i} \le } \end{array}\\ \begin{array}{*{20}{l}} {{{\left| {{F_0}} \right|}^2} + {R_1}\sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} \left( {1 + {C_1}\theta \mathit{\Delta} } \right){{\left| {{y_i}} \right|}^2} + \left( {{R_2} - } \right.}\\ {\left. {{R_1}{C_2}\theta \delta } \right)\sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {{\left| {{y_{i - m + 1}}} \right|}^2}\mathit{\Delta} + \left( {{R_3} - {R_1}{C_2}\theta (1 - } \right.} \end{array}\\ \delta ))\sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {\left| {{y_{i - m}}} \right|^2}\mathit{\Delta} + \sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {M_i} \end{array} $

整理得

$ \begin{array}{l} {A^{k\mathit{\Delta} }}{\left| {{F_k}} \right|^2} \le {\left| {{F_0}} \right|^2} + {k_1}\sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {\left| {{y_i}} \right|^2} + \\ {k_2}\sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {\left| {{y_{i - m + 1}}} \right|^2} + {k_3}\sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {\left| {{y_{i - m}}} \right|^2} + \\ \sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {M_i} \end{array} $ (11)

式(11)中

$ \left\{ {\begin{array}{*{20}{l}} {{k_1} = {R_1}\left( {1 + {C_1}\theta \mathit{\Delta} } \right)}\\ {{k_2} = \left( {{R_2} - {R_1}{C_2}\theta \delta } \right)\mathit{\Delta} }\\ {{k_3} = \left( {{R_3} - {R_1}{C_2}\theta (1 - \delta )} \right)\mathit{\Delta} } \end{array}} \right. $

以下考虑式(11)中$ \sum\limits_{i = 0}^{k - 1} {{A^{\left( {i + 1} \right)\mathit{\Delta }}}{{\left| {{y_{i - m + 1}}} \right|}^2}} $$\sum\limits_{i = 0}^{k - 1} {{A^{\left( {i + 1} \right)\mathit{\Delta }}}{{\left| {{y_{i - m}}} \right|}^2}} $两项。显然有

$ \begin{array}{*{20}{l}} {\sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {{\left| {{y_{i - m + 1}}} \right|}^2} = \sum\limits_{i = - m - 1}^{k - m} {{A^{(i + m)\mathit{\Delta} }}} {{\left| {{y_i}} \right|}^2} \le }\\ {{A^\tau }\sum\limits_{i = - m - 1}^{k - m} {{A^{(i + 1)\mathit{\Delta} }}} {{\left| {{y_i}} \right|}^2} \le {A^\tau }\sum\limits_{i = - m - 1}^{ - 1} {{A^{(i + 1)\mathit{\Delta} }}} {{\left| {{y_i}} \right|}^2} + }\\ {{A^\tau }\sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {{\left| {{y_i}} \right|}^2} \le {A^{\tau + \mathit{\Delta} }}\sum\limits_{i = - m - 1}^{ - 1} {{A^{(i + 1)\mathit{\Delta} }}} {{\left| {{y_i}} \right|}^2} + }\\ {{A^{\tau + \mathit{\Delta} }}\sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {{\left| {{y_i}} \right|}^2}} \end{array} $ (12)
$ \begin{array}{l} \sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {\left| {{y_{i - m}}} \right|^2} = \sum\limits_{i = - m}^{k - m - 1} {{A^{(i + m + 1)\mathit{\Delta} }}} {\left| {{y_i}} \right|^2} \le \\ {A^{\tau + \mathit{\Delta} }}\sum\limits_{i = - m}^{k - m - 1} {{A^{(i + 1)\mathit{\Delta} }}} {\left| {{y_i}} \right|^2} \le {A^{\tau + \mathit{\Delta} }}\sum\limits_{i = - m}^{ - 1} {{A^{(i + 1)\mathit{\Delta} }}} {\left| {{y_i}} \right|^2} + \\ {A^{\tau + \mathit{\Delta} }}\sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {\left| {{y_i}} \right|^2} \le {A^{\tau + \mathit{\Delta} }}\sum\limits_{i = - m - 1}^{ - 1} {{A^{(i + 1)\mathit{\Delta} }}} {\left| {{y_i}} \right|^2} + \\ {A^{\tau + \mathit{\Delta} }}\sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {\left| {{y_i}} \right|^2} \end{array} $ (13)

将式(12)、(13)代入式(11),有

$ \begin{array}{l} {A^{k\mathit{\Delta} }}{\left| {{F_k}} \right|^2} \le {\left| {{F_0}} \right|^2} + {k_1}\sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {\left| {{y_i}} \right|^2} + \\ {k_2}\left( {{A^{\tau + \mathit{\Delta} }}\sum\limits_{i = - m - 1}^{ - 1} {{A^{(i + 1)\mathit{\Delta} }}} {{\left| {{y_i}} \right|}^2} + {A^{\tau + \mathit{\Delta} }}\sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {{\left| {{y_i}} \right|}^2}} \right) + \\ {k_3}\left( {{A^{\tau + \mathit{\Delta} }}\sum\limits_{i = - m - 1}^{ - 1} {{A^{(i + 1)\mathit{\Delta} }}} {{\left| {{y_i}} \right|}^2} + {A^{\tau + \mathit{\Delta} }}\sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {{\left| {{y_i}} \right|}^2}} \right) + \\ \sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {M_i} \end{array} $

合并系数得

$ \begin{array}{l} {A^{kA}}{\left| {{F_k}} \right|^2} \le {\left| {{F_0}} \right|^2} + \left( {{k_1} + {k_2}{A^{\tau + \mathit{\Delta} }} + } \right.\\ \left. {{k_3}{A^{\tau + \mathit{\Delta} }}} \right)\sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {\left| {{y_i}} \right|^2} + \left( {{k_2}{A^{\tau + \mathit{\Delta} }} + } \right.\\ \left. {{k_3}{A^{\tau + \mathit{\Delta} }}} \right)\sum\limits_{i = - m - 1}^{ - 1} {{A^{(i + 1)\mathit{\Delta} }}} {\left| {{y_i}} \right|^2} + \sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {M_i} \end{array} $ (14)

式(14)中

$ \begin{array}{l} {k_1} + {k_2}{A^{\tau + \mathit{\Delta} }} + {k_3}{A^{\tau + \mathit{\Delta} }} = {R_1}\left( {1 + {C_1}\theta \mathit{\Delta} } \right) + \left( {{C_2} - } \right.\\ \left. {{R_1}{C_2}\theta \delta } \right)\mathit{\Delta} {A^{\tau + \mathit{\Delta} }} = \mathit{\Delta} \left( {\left( {\frac{{{R_1}}}{\mathit{\Delta} } + {C_2}{A^{\tau + \mathit{\Delta} }}} \right) + {R_1}\left( {{C_1}\theta - } \right.} \right.\\ \left. {\left. {{A^{\tau + \mathit{\Delta} }}{C_2}\theta \delta } \right)} \right) \end{array} $ (15)

④ 证明AE|Fk|2有界。

考虑式(15)中k1+k2Aτ+Δ+k3Aτ+Δ的正负。

首先考虑R1(C1θAτ+ΔC2θδ)的正负。

C1>C2Aτ+Δ,故C1>C2Aτ+Δδ,从而有C1θAτ+ΔC2θδ>0,因此有R1(C1θAτ+ΔC2θδ) < 0,进而有k1+k2Aτ+Δ+k3Aτ+Δ$\mathit{\Delta }\left( {\frac{{{R_1}}}{\mathit{\Delta}} + {C_2}{A^{\tau + \mathit{\Delta }}}} \right) $

接下来考虑$\mathit{\Delta} \left( {\frac{{{R_1}}}{\mathit{\Delta} } + {C_2}{A^{\tau + \mathit{\Delta} }}} \right)$的正负。

由0 < C2, C < C1, A>1=e0可知,存在足够小的Δ,使得C>C2Aτ+Δ,因此

$ {{\rm{e}}^{C - {C_2}{A^{\tau + \Delta }}}} > A $ (16)

在式(16)的条件下,有CC2Aτ+Δ≥lnA,进而CC2Aτ+ΔAΔlnA

结合式(8)有-C2Aτ+ΔR1′(Δ),故$ \mathop {\lim }\limits_{\mathit{\Delta } \to 0} \frac{{{R_1}}}{\mathit{\Delta }} + {C_2}{A^{\tau + \mathit{\Delta }}} \le 0$;进一步因式(15)中k1+k2Aτ+Δ+k3Aτ+Δ≤0,则式(14)变为

$ \begin{array}{l} {A^{k\mathit{\Delta} }}{\left| {{F_k}} \right|^2} \le {\left| {{F_0}} \right|^2} + \left( {{k_2}{A^{\tau + \mathit{\Delta} }} + } \right.\\ \left. {{k_3}{A^{\tau + \mathit{\Delta} }}} \right)\sum\limits_{i = - m - 1}^{ - 1} {{A^{(i + 1)\mathit{\Delta} }}} {\left| {{y_i}} \right|^2} + \sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} {M_i} \end{array} $ (17)

对式(17)两边取期望得

$ \begin{array}{l} {A^{k\mathit{\Delta} }}E{\left| {{F_k}} \right|^2} \le E{\left| {{F_0}} \right|^2} + \left( {{k_2}{A^{\tau + \mathit{\Delta} }} + } \right.\\ \left. {{k_3}{A^{\tau + \mathit{\Delta} }}} \right)\sum\limits_{i = - m - 1}^{ - 1} {{A^{(i + 1)\mathit{\Delta} }}} E{\left| {{y_i}} \right|^2} + \sum\limits_{i = 0}^{k - 1} {{A^{(i + 1)\mathit{\Delta} }}} E{M_i} = \\ E{\left| {{F_0}} \right|^2} + \left( {{k_2}{A^{\tau + \mathit{\Delta} }} + {k_3}{A^{\tau + \mathit{\Delta} }}} \right)\sum\limits_{i = - m - 1}^{ - 1} {{A^{(i + 1)\mathit{\Delta} }}} E{\left| {{y_i}} \right|^2} \le \\ E{\left| {{y_0} - \theta \mathit{\Delta} f\left( {0,{y_0},{{\bar y}_0}} \right)} \right|^2} + \left( {{k_2}{A^{\tau + \mathit{\Delta} }} + } \right.\\ \left. {{k_3}{A^{\tau + \mathit{\Delta} }}} \right)\sum\limits_{i = - m - 1}^{ - 1} {{A^{(i + 1)\mathit{\Delta} }}} E{\left| {\phi \left( {{t_i}} \right)} \right|^2} \le E|\phi (0) - \\ {\left. {\theta \mathit{\Delta} f(0,\phi (0),\overline {\phi (0)} )} \right|^2} + \left( {{k_2}{A^{\tau + \mathit{\Delta} }} + {k_3}{A^{\tau + \mathit{\Delta} }}} \right)\\ \sum\limits_{i = - m - 1}^{ - 1} {{A^{(i + 1)\mathit{\Delta} }}} E{\left| {\phi \left( {{t_i}} \right)} \right|^2}: = K < \infty \end{array} $

由此得到了AE|Fk|2的有界性。

⑤ 证明$\mathop {\lim }\limits_{\mathit{k} \to \infty } \frac{{\lg E{{\left| {{y_k}} \right|}^2}}}{{k\mathit{\Delta }}} \le - \lg A < 0 $

整理式(9)得

$ {\left| {{F_k}} \right|^2} \ge \left( {1 + {C_1}\theta \mathit{\Delta} } \right){\left| {{y_k}} \right|^2} - {C_2}\theta \mathit{\Delta} {\left| {{{\bar y}_k}} \right|^2} $

故有

$ {\left| {{y_k}} \right|^2} \le \frac{{{{\left| {{F_k}} \right|}^2} + {C_2}\theta \mathit{\Delta} {{\left| {{{\bar y}_k}} \right|}^2}}}{{1 + {C_1}\theta \mathit{\Delta} }} $ (18)

对式(18)两边乘A并取期望,得

$ \begin{array}{l} {A^{k\mathit{\Delta} }}E{\left| {{y_k}} \right|^2} \le \frac{{{A^{k\mathit{\Delta} }}E{{\left| {{F_k}} \right|}^2} + {A^{kA}}{C_2}\theta \mathit{\Delta} E{{\left| {{{\bar y}_k}} \right|}^2}}}{{1 + {C_1}\theta \mathit{\Delta} }} \le \\ \begin{array}{*{20}{l}} {\frac{{K + {A^{k\mathit{\Delta} }}{C_2}\theta \mathit{\Delta} E{{\left| {{{\bar y}_k}} \right|}^2}}}{{1 + {C_1}\theta \mathit{\Delta} }} \le \frac{{K + {A^{k\mathit{\Delta} }}{C_2}\theta \mathit{\Delta} \delta E{{\left| {{y_{k - m + 1}}} \right|}^2}}}{{1 + {C_1}\theta \mathit{\Delta} }} + }\\ {\frac{{{A^{k\mathit{\Delta} }}{C_2}\theta \mathit{\Delta} (1 - \delta )E{{\left| {{y_{k - m}}} \right|}^2}}}{{1 + {C_1}\theta \mathit{\Delta} }}} \end{array} \end{array} $

$ \left\{ {\begin{array}{*{20}{l}} {b = \frac{K}{{1 + {C_1}\theta \mathit{\Delta} }}}\\ {{q_1} = \frac{{{C_2}\theta \mathit{\Delta} \delta {A^{(m - 1)\mathit{\Delta} }}}}{{1 + {C_1}\theta \mathit{\Delta} }} \le \frac{{{C_2}\theta \mathit{\Delta} \delta {A^\tau }}}{{1 + {C_1}\theta \mathit{\Delta} }} \le \frac{{{C_2}\theta \mathit{\Delta} \delta {A^{\tau + \mathit{\Delta}}}}}{{1 + {C_1}\theta \mathit{\Delta} }}}\\ {{q_2} = \frac{{{C_2}\theta \mathit{\Delta} (1 - \delta ){A^{m\mathit{\Delta}}}}}{{1 + {C_1}\theta \mathit{\Delta} }} \le \frac{{{C_2}\theta \mathit{\Delta} (1 - \delta ){A^{\tau + \mathit{\Delta}}}}}{{1 + {C_1}\theta \mathit{\Delta} }}} \end{array}} \right. $

则有AE|yk|2b+q1A(km+1)ΔE|yk-m+1|2+q2A(km)ΔE|yk-m|2

ak=AE|yk|2,有递推式akb+q1akm+1+q2akm,从而得到

$ \begin{array}{l} {a_k} \le b + {q_1}{a_{k - m + 1}} + {q_2}{a_{k - m}} \le b\sum\limits_{i = 0}^1 {{{\left( {{q_1} + {q_2}} \right)}^i}} \\ + C_2^0q_1^2q_2^0{a_{k - 2(m - 1)}} + C_2^1q_1^1q_2^1{a_{k - 2(m - 1) - 1}} + C_2^2q_1^0q_2^2{a_{k - 2m}} \le \\ b\sum\limits_{i = 0}^2 {{{\left( {{q_1} + {q_2}} \right)}^i}} + C_3^0q_1^3q_2^0{a_{k - 3(m - 1)}} + C_3^1q_1^2q_2^1{a_{k - 3(m - 1)}} - 1 + \\ C_3^2q_1^1q_2^2{a_{k - 3(m - 1) - 2}} + C_3^3q_1^0q_2^3{a_{k - 3m}} \le \cdots \le b\sum\limits_{i = 1}^l {\left( {{q_1} + } \right.} \\ {\left. {{q_2}} \right)^i} + \sum\limits_{i = 0}^{l + 1} {C_{l + 1}^i} q_1^{l + 1 - i}q_2^i{a_{k - (l + 1)(m - 1) - i}} \end{array} $ (19)

式(19)中$l = \left\lfloor {\frac{k}{{m - 1}}} \right\rfloor $。显然式(19)最后一个不等式中a的下标均小于等于0。

C1>C2Aτ+Δ,当Δ充分小时,有q1+q2$ \frac{{{C_2}\theta \mathit{\Delta }{A^{\tau + \mathit{\Delta }}}}}{{1 + {C_1}\theta \mathit{\Delta }}}$ < 1,从而式(19)变为

$ \begin{array}{*{20}{l}} {{A^{k\mathit{\Delta} }}E{{\left| {{y_k}} \right|}^2} \le \frac{b}{{1 - \left( {{q_1} + {q_2}} \right)}} + \mathop {\sup }\limits_{ - \tau \le t \le 0} E|\phi (t){|^2}}&{}\\ {\sum\limits_{i = 0}^{l + 1} {C_{l + 1}^iq_1^{l + 1 - i}} q_2^i = {K^\prime } < \infty }&{} \end{array} $

$ \mathop {\lim }\limits_{k \to \infty } \frac{{\lg E{{\left| {{y_k}} \right|}^2}}}{{k\mathit{\Delta} }} \le - \lg A < 0 $

第⑤步证明完成。至此,得到了随机线性θ方法数值解的均方指数稳定性,定理1得证。证毕。

3 结束语

本文参考文献[4]中θ-EM数值格式的方法,研究了随机时滞微分方程随机线性θ方法的均方指数稳定性。与文献[5]相比,本文处理了更为复杂的滞后项,并在相同条件下得到了随机线性θ方法的均方指数稳定性(1/2<θ≤1),从而几乎处处指数稳定,比文献[5]中的结论更完善。

参考文献
[1]
HIGHAM D J. Mean-square and asymptotic stability of the stochastic theta method[J]. SIAM Journal on Numerical Analysis, 2001, 38(3): 753-769.
[2]
ZONG X F, WU F K. Choice of θ and mean-square exponential stability in the stochastic theta method of stochastic differential equations[J]. Journal of Computational and Applied Mathematics, 2014, 255: 837-847. DOI:10.1016/j.cam.2013.07.007
[3]
ZONG X F, WU F K, HUANG C M. Exponential mean square stability of the theta approximations for neutral stochastic differential delay equations[J]. Journal of Computational and Applied Mathematics, 2015, 286: 172-185. DOI:10.1016/j.cam.2015.03.016
[4]
LAN G Q, YUAN C G. Exponential stability of the exact solutions and θ-EM approximations to neutral SDDEs with Markov switching[J]. Journal of Computational and Applied Mathematics, 2015, 28(35): 230-242.
[5]
HUANG C M. Mean square stability and dissipativity of two classes of theta methods for systems of stochastic delay differential equations[J]. Journal of Computational and Applied Mathematics, 2014, 259: 77-86. DOI:10.1016/j.cam.2013.03.038