文章快速检索     高级检索
  北京化工大学学报(自然科学版)  2019, Vol. 46 Issue (5): 1-7   DOI: 10.13543/j.bhxbzr.2019.05.001
0

引用本文  

易睿, 陈东梁, 李方俊, 董俊莹, 张东胜, 徐鹏, 颜廷杰. 附着于玻璃表面的柴油火灾烟尘特性研究[J]. 北京化工大学学报(自然科学版), 2019, 46(5): 1-7. DOI: 10.13543/j.bhxbzr.2019.05.001.
YI Rui, CHEN DongLiang, LI FangJun, DONG JunYing, ZHANG DongSheng, XU Peng, YAN TingJie. Characteristics of diesel combustion soot attached to the surface of glass[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2019, 46(5): 1-7. DOI: 10.13543/j.bhxbzr.2019.05.001.

基金项目

北京高等学校青年英才计划(YETP0499)

第一作者

易睿, 女, 1993年生, 硕士生.

通信联系人

陈东梁, E-mail:dongliangchen@foxmail.com

文章历史

收稿日期:2018-12-06
附着于玻璃表面的柴油火灾烟尘特性研究
易睿 1, 陈东梁 1, 李方俊 1, 董俊莹 1, 张东胜 1, 徐鹏 2, 颜廷杰 3     
1. 北京化工大学 机电工程学院, 北京 100029;
2. 国家纳米科学中心 中国科学院纳米技术标准化和测量重点实验室, 北京 100190;
3. 胜利石油工程公司培训中心, 东营 257064
摘要:在开放空间中利用玻璃片采集柴油燃烧火焰不同高度下的烟尘颗粒物,通过扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和拉曼光谱分析烟尘颗粒的理化特性,结果表明:烟尘中碳、氧元素以无定形C、C—C、C—O、—COOH和吸附O等多种状态结合;随着采样高度的增加,烟尘中无定形C的含量呈现增大的趋势,无序化程度增强。
关键词火灾    柴油烟尘分析    元素种类    微观形貌    C元素结构特征    
Characteristics of diesel combustion soot attached to the surface of glass
YI Rui1 , CHEN DongLiang1 , LI FangJun1 , DONG JunYing1 , ZHANG DongSheng1 , XU Peng2 , YAN TingJie3     
1. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029;
2. CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190;
3. Training Center of Shengli Petroleum Engineering Company, Dongying 257064, China
Abstract: The small scale diesel combustion experiments were conducted in open space, and the glass sheets were used to collect the soot particles at different height of the flame. The physical and chemical properties of soot particles were explored by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectra. The results show that the carbon and oxygen elements in the soot are combined in various states such as amorphous C, C-C, C-O, -COOH and adsorption O. With the increase of sampling distance, the content of amorphous carbon and the degree of disorder in the soot show an increasing trend.
Key words: fire    diesel soot analysis    element type    micro-morphology    structure characteristics of C element    
引言

在建筑火灾中,玻璃痕迹常常是调查事故发生原因的重要痕迹物证之一。在火场中,烟尘是无处不在的,火灾现场虽易受诸多外在因素的破坏,但燃烧烟尘的存在依然能够很好地保存火场中可燃物的信息[1]。调查人员可通过对起火点处残留燃烧物及其附近的烟尘进行分析鉴定,从而判定某种可燃物的存在,为准确找出火灾原因、判断火灾案件性质提供强有力的证据[2]

在火灾事故中,烟尘主要是由燃料热解、燃烧反应、系统内热解与燃烧产物之间发生反应产生的混合物组成。在空间迁移过程中,这些混合物也有可能与其依附的载体发生反应。随着燃烧时间的增加,这些反应可能呈现各不相同的特点,直接表现为成分的变化;与燃烧点的距离不同,烟气的组成成分与同时期火源产生的燃烧产物相比也可能会发生一些变化[3]。因此,关于燃烧烟尘的研究一直是国内外火灾事故调查的重点,并取得了许多有意义的研究成果。大量学者探讨了燃烧实验条件(包括燃料种类、通风情况、烟尘取样位置和烟尘静置时间等)对燃烧烟尘组分的影响,揭示了相关因素对烟尘颗粒物成分的影响规律[4-12]。然而目前的研究大多集中于对火灾现场的可燃物本身、可燃物的提取和可燃物燃烧残留物进行分析,对常见可燃物燃烧产生的烟尘特征及其形成机理的研究比较少见;同时,国内外对燃烧距离的相关研究较少,而在实际的火灾调查过程中,燃烧烟尘的形成会受采样距离等因素的影响,因此,研究采样距离对燃烧烟尘变化规律的具体影响是十分必要的。本文针对火场中柴油在不同的采样距离下可能对烟尘产生的影响及烟尘颗粒物的特性进行分析,为火灾事故调查提供一个新的思路。

1 实验部分 1.1 实验原料

2.5 cm×7.5 cm×1.2 mm的耐高温玻璃片,主要成分为Na2SiO3、CaSiO3、Na2O·CaO·6SiO2;0#柴油,中国石油化工集团有限公司。

1.2 实验条件及方法

本文实验均在全敞开条件下进行。当可燃物处在火焰中不同的位置时,氧含量、温度等参数均会发生变化,直接表现为燃烧烟尘颗粒物种类及其含量的变化,故本文通过改变燃烧距离设计3组实验,燃烧距离分别为可燃物处于近内焰、外焰和远离外焰的位置,各燃烧样品相关信息如表 1所示。

下载CSV 表 1 实验参数表 Table 1 Experimental parameters

图 1所示,按照预先设定的采样距离将玻璃片固定在铁架台上,在圆形油盘中倒入45 mL的0#柴油,预热到一定温度后将其点燃。当燃烧火焰稳定后,将玻璃片移动至火焰上方进行燃烧烟尘的采集;达到预设燃烧时间(40 s)时,迅速将玻璃片移至远离火焰处,待玻璃片冷却后,贴上标签并做好相应标记,装入采样盒。

图 1 燃烧烟尘采集示意图 Fig.1 The schematic diagram of the experiment setup
1.3 测试与表征

使用日本日立公司的Hitachi S-4800型扫描电子显微镜(SEM)进行微观形貌分析,入射电子能量20 keV,放大倍数分别为500倍、2 500倍、2.5×104倍和105倍,观察烟尘样品的微观形貌特征。

使用美国Thermo Fisher Scientific公司的EXCALAB 250Xi型X射线光电子能谱仪进行X射线光电子能谱(XPS)分析,入射光源采用单色光Al Kɑ (1 486.6 eV),能量扫描范围设置为-200~1 400 eV,主要研究烟尘样品内部元素组成、官能团种类及其摩尔分数。

使用英国雷尼绍公司的Renishaw in Via plus型激光拉曼光谱仪进行拉曼(Raman)分析,激光波长514 nm,拉曼位移范围0~3 200 cm-1,50倍物镜,分析烟尘样品的C元素结构特征。

2 结果与讨论 2.1 微观形貌

采用SEM对A1~A3烟尘样品的微观形貌及其粒径大小进行分析,如图 2~4所示。

图 2 A1烟尘样品SEM图 Fig.2 Typical SEM images of A1 soot sample
图 3 A2烟尘样品SEM图 Fig.3 Typical SEM images of A2 soot sample
图 4 A3烟尘样品SEM图 Fig.4 Typical SEM images of A3 soot sample

图 2~4可知,样品中分布着很多裂缝和尺寸不一的孔洞,整体呈现疏松多孔的结构,且颗粒间紧密地连接在一起。烟尘颗粒呈球状,粒径基本在50~75 nm。

为探究各个烟尘样品的差异性,对其密集度进行分析,发现外焰产生的烟尘颗粒排列最为稠密,呈粒状密集分布,且分布叠加严重;而远离外焰产生的烟尘则显得较为轻薄,且比较分散,主要表现为孔洞尺寸较大。

2.2 元素组成 2.2.1 全谱扫描图谱

XPS扫描得出各烟尘样本的全谱图见图 5(a)~(c)

图 5 A1, A2和A3样品全扫描图 Fig.5 XPS survey spectra of A1, A2 and A3

图 5(a)~(c)的烟尘样品全扫描图谱中可知,在样品的整个扫描区间内均出现C、O元素。为进一步分析C、O元素的变化规律,对其摩尔分数进行分析,结果见表 2

下载CSV 表 2 C、O元素的摩尔分数 Table 2 The atomic percentages of C and O

表 2数据可以看出:样品表面主要的化学成分没有变化,只是C、O元素含量发生了变化。C元素摩尔分数与O元素摩尔分数之比(xC/xO)由高到低的顺序依次为A2>A1>A3,可知燃烧距离为外焰时C元素含量最高,即C的氧化程度最低;燃烧距离远离外焰时C元素含量最低,即C的氧化程度最高。柴油燃烧后的产物为NO、NO2、CO、CO2以及不完全燃烧时产生的大量黑烟(其中包含未燃烧的油雾和炭粒)。柴油燃烧火焰的焰心处主要是汽化的柴油蒸汽;近内焰处主要发生柴油的裂解反应和一部分燃烧反应,柴油的裂解产生了较多CH4、C2H4等气态烷烃类物质,而燃烧反应主要为不完全燃烧;外焰处主要发生燃烧反应(大多为完全燃烧,极小部分为不完全燃烧),且外焰也包含部分内焰燃烧后的产物。所以燃烧距离为外焰时C元素含量最高。

2.2.2 高分辨细扫描图谱

对C、O两种元素的最强峰附近进行窄区域高分辨细扫描,再用XPS PEAK 4.1软件对样品C、O窄区域细扫描图中可能存在重叠的峰进行分峰处理以获得相应特征峰的结合能、半峰宽和峰面积等相关数据,从而推断出烟尘表面的官能团种类及含量。由图 6~8可知,通过分峰曲线拟合得到C1s的特征峰位于284.3~284.4 eV、284.8~284.9 eV、286.5 eV和288.7~289.5 eV,结合XPS图谱数据库和相关的文献资料确定相应的官能团分别为无定形C、C—C、C—O和—COOH;O1s的特征峰位于531.2~531.8 eV、532.3~532.8 eV和533.4~533.7 eV,相应的官能团分别为CO、C═O和吸附O。

图 6 近内焰处(A1)样品分峰拟合图 Fig.6 XPS high resolution spectra of A1
图 7 外焰处(A2)样品分峰拟合图 Fig.7 XPS high resolution spectra of A2
图 8 远离外焰(A3)样品分峰拟合图 Fig.8 XPS high resolution spectra of A3

对每个特征峰面积进行计算可以得到对应官能团的摩尔分数,见表 3。通过表中数据可以发现,这几种官能团的相对含量会随着燃烧距离的改变出现一些共性和差异性,总结如下。

下载CSV 表 3 各官能团的摩尔分数 Table 3 The relative content of corresponding functional groups

(1) 在C1s的4个官能团中,C—C占多数(摩尔分数均在65%以上),—COOH的含量最少;在O1s的3个官能团中,C═O的含量最少。

(2) 无定形C中的C单质没有具体的晶体结构,即没有特定的形状和周期性结构的规律。无定形C越多,表明烟尘样品的结构越无序。由XPS的无定形C结果可知,各样品无序性的程度由大到小顺序为A3>A2>A1。

(3) 吸附O是指气态的氧分子因化学吸附作用在样品表面形成的O2-或O-,而烟尘样品表面的缺陷与其吸附性有极大关系[13]。由XPS吸附O结果可知,各样品表面吸附性大小为A2>A1>A3,则烟尘样品表面的缺陷大小为A2>A1>A3。

2.3 C元素结构特征

为进一步了解柴油燃烧烟尘样品中C元素内部的结构特征,使用拉曼光谱分析烟尘样品。

所有样品的拉曼图谱(图 9)中都含有两个明显的吸收谱带,即D峰和G峰,分别在1 300 cm-1和1 590 cm-1附近,其强度在一定程度上与C元素的内部特征有关,主要表现为这些特征越明显,特征峰强度相应越大。由图 9可知,D峰、G峰强度大小依次为A2>A3>A1,表明外焰产生的烟尘内部C原子晶格缺陷和C原子sp2杂化的面内伸缩振动是最大的,内焰的则最小。烟尘样品C原子晶格缺陷与其表面吸附性有极大的关系,这与XPS吸附O的相对含量规律是一致的。

图 9 样品拉曼检测结果对比 Fig.9 The comparison of Raman spectra for soot samples

D、G两个峰强度的比值ID/IG(相对强度的改变)是判断样品石墨化程度的重要手段,其比值越小,说明材料有序化程度越高,反之,则无序化程度就越高。使用Origin软件测量3个样品的D峰和G峰的拉曼位移(X)和强度(Y),以D峰和G峰的Y值最大值作比,即ID/IG,计算结果总结在表 4中。

下载CSV 表 4 各样品的ID/IG计算数据 Table 4 Calculation results of ID/IG

表 4结果表明,随着燃烧距离的增大,ID/IG值逐步增大。这是因为随着燃烧距离的增大,碳层结构越来越不稳定,有序性越来越低。烟尘样品越无序表明样品中含有的无定形C数量越多,这与XPS得出的无定形C摩尔分数规律是一致的。

3 结论

(1) 使用XPS分析了柴油燃烧时在近内焰、外焰和远离外焰处产生的燃烧烟尘,发现3组样品中均只含C、O元素,其中外焰C原子摩尔分数最高,氧化程度最低;C、O分峰图结果表明烟尘中含有无定形C、C—C、C—O、—COOH和吸附O等多种官能团,各官能团的相对含量随燃烧距离的变化而变化,且呈现出一定的共性和差异性。

(2) 对比分析3组烟尘在不同放大倍数下的SEM结果,发现外焰燃烧时的烟尘颗粒排列最为密集,即其烟尘颗粒浓度最高,证明了不同燃烧距离下柴油燃烧烟尘在物理形态上具有差异性。

(3) 3组烟尘样品的拉曼光谱分析结果表明,采样距离对烟尘颗粒中C元素的结构有一定影响,随着燃烧距离的增大,C元素有序性越来越低。

参考文献
[1]
刘义祥, 王启立. 燃烧烟尘凝团形貌的分形辨别方法研究[J]. 火灾科学, 2014, 23(3): 136-140.
LIU Y X, WANG Q L. Method of distinguishing burning soot by fractal analysis[J]. Fire Safety Science, 2014, 23(3): 136-140. (in Chinese) DOI:10.3969/j.issn.1004-5309.2014.03.02
[2]
玉明照.柴油燃烧残留物及烟尘的分析[C]//中国消防协会学术工作委员会. 2007消防科技与工程学术会议论文集.北京: 中国石化出版社, 2008: 299-300.
YU M Z. Analysis of diesel combustion residues and soot[C]//Science & Technique Committee of CFPA. Proceedings of the 2007 Fire Science and Technology Conference. Beijing: China Petrochemical Press, 2008: 299-300. (in Chinese)
[3]
黄锐, 杨立中, 方伟峰, 等. 火灾烟气危害性研究及其进展[J]. 中国工程科学, 2002, 4(7): 80-85.
HUANG R, YANG L Z, FANG W F, et al. Progress in study of hazard analysis of fire smoke[J]. Engineering Science, 2002, 4(7): 80-85. (in Chinese) DOI:10.3969/j.issn.1009-1742.2002.07.015
[4]
ALMIRALL J R, FURTON K G. Characterization of background and pyrolysis products that may interfere with the forensic analysis of fire debris[J]. Journal of Analytical & Applied Pyrolysis, 2004, 71(1): 51-67.
[5]
李铭迪, 王忠, 李立琳, 等. 乙醇/柴油燃烧颗粒状态特征试验研究[J]. 农业机械学报, 2013, 44(3): 28-32.
LI M D, WANG Z, LI L L, et al. Particulate status of diesel engine fueled with ethanol/diesel blends[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(3): 28-32. (in Chinese)
[6]
邹红. 载体对柴油燃烧残留物成分GC-MS分析的影响[J]. 消防技术与产品信息, 2015(5): 43-46.
ZOU H. The effect of carrier on GC-MS analysis of diesel combustion residues[J]. Fire Technique and Products Information, 2015(5): 43-46. (in Chinese) DOI:10.3969/j.issn.1002-784X.2015.05.015
[7]
支有冉, 宗若雯, 曾文茹, 等. 火灾调查中助燃剂烟尘的提取分析[J]. 燃烧科学与技术, 2011, 17(5): 461-468.
ZHI Y R, ZONG R W, ZENG W R, et al. Accelerant soot extraction analysis in fire investigation[J]. Journal of Combustion Science and Technology, 2011, 17(5): 461-468. (in Chinese)
[8]
BUKHTIYAROV A V, PROSVIRIN I P, BUKHTIYAROV V I. XPS/STM study of model bimetallic Pd-Au/HOPG catalysts[J]. Applied Surface Science, 2016, 367: 214-221. DOI:10.1016/j.apsusc.2016.01.173
[9]
张东明.柴油机燃烧过程中颗粒物表面官能团变化规律的研究[D].天津: 天津大学, 2009.
ZHANG D M. Study on the change law of the surface functional groups on the particle surface during the combustion process of diesel engine[D]. Tianjin: Tianjin University, 2009. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10056-2010091145.htm
[10]
李飞, 宗若雯, 支有冉, 等. 汽油燃烧烟尘的分析与分类[J]. 燃烧科学与技术, 2011, 17(1): 90-95.
LI F, ZONG R W, ZHI Y R, et al. Analysis and classification of gasoline soot[J]. Journal of Combustion Science and Technology, 2011, 17(1): 90-95. (in Chinese)
[11]
支有冉.典型可燃物燃烧烟尘的分析及辨识研究[D].合肥: 中国科学技术大学, 2012.
ZHI Y R. Research on the analysis and identification of combustion soot generated by typical fuels[D]. Hefei: University of Science and Technology of China, 2012. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10358-1012503410.htm
[12]
李博.燃料特性对柴油机颗粒物表面官能团及氧化活性影响研究[D].天津: 天津大学, 2013.
LI B. Effects of fuel formulation on surface functional groups and oxidation reactivity of diesel engines particulate matters[D]. Tianjin: Tianjin University, 2013. (in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10056-1015039461.htm
[13]
李奕, 吴立明, 李俊篯, 等. MgO缺陷和不规则表面的能带结构研究[J]. 结构化学, 1999, 18(3): 218-226.
LI Y, WU L M, LI J J, et al. Study on the band structure of defective and irregular surface on MgO[J]. Chinese Journal of Structure Chemistry, 1999, 18(3): 218-226. (in Chinese) DOI:10.3969/j.issn.0254-5861.1999.03.012