文章快速检索     高级检索
  北京化工大学学报(自然科学版)  2019, Vol. 46 Issue (2): 123-127   DOI: 10.13543/j.bhxbzr.2019.02.019
0

引用本文  

郇飞, 赵雷嘎. 径向对称位势下Klein-Gordon-Maxwell方程解的存在性[J]. 北京化工大学学报(自然科学版), 2019, 46(2): 123-127. DOI: 10.13543/j.bhxbzr.2019.02.019.
HUAN Fei, ZHAO LeiGa. Existence of solutions for the klein-gordon-maxwell equation under a radial symmetry potential[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2019, 46(2): 123-127. DOI: 10.13543/j.bhxbzr.2019.02.019.

基金项目

国家自然科学基金(11671026)

第一作者

郇飞, 女, 1991年生, 硕士生.

通信联系人

赵雷嘎, E-mail:zhaolg@mail.buct.edu.cn

文章历史

收稿日期:2018-07-12
径向对称位势下Klein-Gordon-Maxwell方程解的存在性
郇飞 , 赵雷嘎     
北京化工大学 理学院, 北京 100029
摘要:研究了非线性Klein-Gordon-Maxwell方程问题$ \left\{ \begin{array}{l} - \Delta u + \left[ {V\left( x \right) - {{\left( {\omega + \phi } \right)}^2}} \right]u = \lambda f\left( u \right), \;\;\;\;\;x \in {R^3}\\ - \Delta \phi + {u^2}\phi = - \omega {u^2}, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in {R^3} \end{array} \right.$,其中参数ω>0,λ>0。当Vx)为径向对称位势并且方程的非线性项fu)只在零点附近有定义时,可以通过变分法证明该方程解的存在性,并得到方程的解关于参数λ的依赖性。
关键词Klein-Gordon-Maxwell方程    位势函数    变分方法    P-S条件    L估计    
Existence of solutions for the Klein-Gordon-Maxwell equation under a radial symmetry potential
HUAN Fei , ZHAO LeiGa     
Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, China
Abstract: We have studied the nonlinear Klein-Gordon-Maxwell equation $ \left\{ \begin{array}{l} - \Delta u + \left[ {V\left( x \right) - {{\left( {\omega + \phi } \right)}^2}} \right]u = \lambda f\left( u \right), \;\;\;\;\;x \in {R^3}\\ - \Delta \phi + {u^2}\phi = - \omega {u^2}, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in {R^3} \end{array} \right.$, where the parameter ω>0, λ>0. When V(x) is a radial symmetric potential and the nonlinear term of the equation f(u) is defined only near the zero point, the existence of solution to the equation can be proved by the calculus of variation, and the dependence on the parameter λ of the solution to the equation can be obtained.
Key words: Klein-Gordon-Maxwell equation    potential function    variational method    Palias-Smale conditions    L estimate    
引言

非线性Klein-Gordon-Maxwell方程如式(1)

$ \left\{ \begin{array}{l} - \Delta u + \left[ {V\left( x \right) - {{\left( {\omega + \phi } \right)}^2}} \right]u = \lambda f\left( u \right), \;\;\;\;\;x \in {R^3}\\ - \Delta \phi + {u^2}\phi = - \omega {u^2}, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in {R^3} \end{array} \right. $ (1)

其中ω>0为相位,λR为参数。此类方程最先被文献[1-2]引入,用于描述在三维空间中非线性Klein-Gordon方程与静电场相互作用产生的孤立波问题。其中场函数u和电磁位势ϕ为未知变量,非线性项f(u)用来模拟多个粒子的作用或外部非线性项的干扰。

文献[1-2]最初研究的方程如式(2)

$ \left\{ \begin{array}{l} - \Delta u + \left[ {{m^2} - {{\left( {\omega + \phi } \right)}^2}} \right]u = {\left| u \right|^{p - 2}}u, \;\;\;\;\;x \in {R^3}\\ - \Delta \phi + {u^2}\phi = - \omega {u^2}, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in {R^3} \end{array} \right. $ (2)

并得出|m|>|ω|和4 < p < 6时,方程(2)有无穷多个解。D’Aprile等[3]发现当p≤2或p≥6且mw>0时,方程(2)的解不存在。Cassani[4]发现当4 < p < 6或p=4且λ充分大时,方程(3)至少有一个径向对称解。

$ \left\{ \begin{array}{l} - \Delta u + \left[ {{m^2} - {{\left( {\omega + \phi } \right)}^2}} \right]u = \\ \;\;\;\;\;\lambda {\left| u \right|^{p - 2}}u + {\left| u \right|^{{2^ * } - 2}}u, \;\;\;\;\;\;\;\;\;\;x \in {R^3}\\ - \Delta \phi + {u^2}\phi = - \omega {u^2}, \;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in {R^3} \end{array} \right. $ (3)

近年来,带有位势函数的问题引起了人们的关注,形如式(4)

$ \left\{ \begin{array}{l} - \Delta u + \left[ {V\left( x \right) - {{\left( {\omega + \phi } \right)}^2}} \right]u = f\left( u \right), \;\;\;\;\;x \in {R^3}\\ - \Delta \phi + {u^2}\phi = - \omega {u^2}, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in {R^3} \end{array} \right. $ (4)

Carriao等[5]证明了方程(4)在V(x)为周期位势且非线性项临界增长时,方程有基态解。Jing等[6]证明了当V(x)为衰减位势时,方程有无穷多个非平凡解。

本文通过变分方法研究Klein-Gordon-Maxwell方程在径向对称位势下,且方程的非线性项f(u)只在零点附近有定义时方程的解的存在性,并得到解关于参数λ的依赖性。

1 定理的提出

首先对非线性项f(u)及势函数V(x)假设如下条件:

① 存在δ0>0,使得f(u)∈C[-δ0, δ0];

$\mathop {\lim }\limits_{u \to 0} \frac{{f\left( u \right)}}{{{{\left| u \right|}^{p - 2}}u}} = 1 $,4≤p < 6;

③ 存在μ∈[4, 6)和δ1>0,使得0 < |u| < δ1时,有0 < μF(u)≤uf(u),其中F(u)=∫0uf(t)dt

V(x)∈C(R3, R)且V(x)是径向对称函数;

$\mathop {\inf }\limits_{x \in {R^3}} V\left( x \right) > {\omega ^2} > 0 $

条件①~③只是f(u)在零点附近的条件,其中条件③为Ambrosetti-Rabinowitz条件[7]在零点附近的局部形式,在无穷远处对f(u)不加任何条件的限制。

其次,为了对本文的结果作准确的说明,给出如下定义:令Hr1(R3)、Dr1, 2(R3)分别为H1(R3)和D1, 2(R3)={uL6(R3):|∇u|∈L2(R3)}的径向对称函数空间;H1(R3)的范数记为‖uH12=∫R3(|∇u|2+u2)dxD1, 2(R3)的范数记为${\left\| u \right\|_D} = {\left( {{\smallint _{{R^3}}}{{\left| {\nabla u} \right|}^2}{\rm{d}}x} \right)^{\frac{1}{2}}} $;用Lp表示通常的Lp(R3)空间,其范数记为‖·‖p;弱收敛记为“⇀”,连续嵌入记为“↺”,紧嵌入记为“↺↺”。

定理1   若条件①~⑤成立,则存在参数Λ>0,使得λ>Λ时,方程(1)至少存在一个非平凡的解(u, ϕu)∈Hr1(R3Dr1, 2(R3),且当λ→∞时,‖uHr1→0,‖ϕuD→0。

由于f(u)只在零点附近有定义,其条件较弱,不能直接应用变分法。为了克服此困难,参考Costad等[8]的方法修正并扩张f(u)为新的$ \tilde f\left( u \right)$,然后通过山路定理,结合解的L估计来证明方程的解的存在性。

2 变分框架及预备引理

观察条件②的隐含条件易知,存在δ2>0及C1C2>0,使得|u| < δ2时有

$ \left\{ \begin{array}{l} F\left( u \right) \ge {C_1}{\left| u \right|^p}\\ F\left( u \right) \le {C_2}{\left| u \right|^p} \end{array} \right. $ (5)

ρ(t)∈C1(R, [0, 1])是一个满足'(t)≤0的截断函数,且

$ \rho \left( t \right) = \left\{ \begin{array}{l} 1, \;\;\;\;\;\left| t \right| < \delta \\ 0, \;\;\;\;\;\left| t \right| > 2\delta \end{array} \right. $

式中$0 < \delta < \frac{{{\delta _3}}}{2}, {\delta _3} = \min \{ {\delta _0}, {\delta _1}, {\delta _2}\} $。则当|u| < 2δ时,式(5)和条件③成立。为了使非线性项在无穷远处有意义,定义式(6)

$ \tilde F\left( u \right) = \rho \left( u \right)F\left( u \right) + \left( {1 - \rho \left( u \right)} \right){C_2}{\left| u \right|^p} $ (6)

引理1[8]  由$ \tilde F\left( u \right)$的定义得$u\tilde f\left( u \right) \ge \theta \tilde F\left( u \right) > 0 $,其中$ u \ne 0, \theta = \min \left\{ {\mu , p} \right\}, \tilde f\left( u \right) = \frac{{{\rm{d}}\tilde F\left( u \right)}}{{{\rm{d}}u}}$

由式(6)可将式(1)修正为式(7)

$ \left\{ \begin{array}{l} - \Delta u + \left[ {V\left( x \right) - {{\left( {\omega + \phi } \right)}^2}} \right]u = \lambda \tilde f\left( u \right), \;\;\;\;\;x \in {R^3}\\ - \Delta \phi + {u^2}\phi = - \omega {u^2}, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in {R^3} \end{array} \right. $ (7)

式(7)所对应的泛函为

$ \begin{array}{l} G\left( {u, \phi } \right) = \frac{1}{2}\int_{{R^3}} {\left( {{{\left| {\nabla u} \right|}^2} + V\left( x \right){u^2}} \right){\rm{d}}x} - \frac{1}{2}\int_{{R^3}} {} \\ {\left| {\nabla \phi } \right|^2}{\rm{d}}x - \frac{1}{2}\int_{{R^3}} {{{\left( {\omega + \phi } \right)}^2}{u^2}{\rm{d}}x} - \lambda \int_{{R^3}} {\tilde F\left( u \right){\rm{d}}x} \end{array} $ (8)

引理2[2]  对每个uHr1(R3),都存在唯一的ϕuDr1, 2(R3),且满足-Δϕ+u2ϕ=-ωu2

由引理2知,ϕu为方程-Δϕ+u2ϕ=-ωu2的弱解。在-Δϕ+u2ϕ=-ωu2两边同乘ϕu,再进行积分得

$ \int_{{R^3}} {{{\left| {\nabla {\phi _u}} \right|}^2}{\rm{d}}x} + \int_{{R^3}} {{{\left| u \right|}^2}\phi _u^2{\rm{d}}x} = - \omega \int_{{R^3}} {{u^2}{\phi _u}{\rm{d}}x} $ (9)

将式(9)带入式(8),得到新的泛函G(u, ϕu),记为$\tilde I\left( u \right) $

$ \begin{array}{l} \tilde I\left( u \right) = \frac{1}{2}\int_{{R^3}} {\left( {{{\left| {\nabla u} \right|}^2} + V\left( x \right){u^2}} \right){\rm{d}}x} - \frac{1}{2}\int_{{R^3}} {\left( {{\omega ^2} + } \right.} \\ \left. {\omega {\phi _u}} \right){u^2}{\rm{d}}x - \lambda \int_{{R^3}} {\tilde F\left( u \right){\rm{d}}x} \end{array} $ (10)

进一步可得式(11)

$ \begin{array}{l} \left\langle {\tilde I'\left( {{u_n}} \right), {u_n}} \right\rangle = \int_{{R^3}} {\left\{ {{{\left| {\nabla {u_n}} \right|}^2} + \left[ {V\left( x \right) - \left( {{\omega ^2} + } \right.} \right.} \right.} \\ \left. {\left. {\left. {\omega {\phi _u}} \right)} \right]u_n^2} \right\}{\rm{d}}x - \lambda \int_{{R^3}} {\tilde f\left( {{u_n}} \right){u_n}{\rm{d}}x} \end{array} $ (11)

引理3[9]  ϕu有以下性质:

1) ϕu≤0;

2) ϕu≥-ω在集合{x|u(x)≠0}上成立;

3) 存在常数C0>0, 使得‖ϕuDC0uH12成立。

证明  由式(7)中的-Δϕ+u2ϕ=-ωu2两端同乘ϕ+=max{ϕu, 0}≥0,得0≤∫R3|∇ϕ+|2+u2ϕ+dx=-ωR3u2ϕ+dx≤0,故ϕ+≡0,即ϕu≤0。

固定uHr1(R3),在-Δϕ+u2ϕ=-ωu2两端同乘(ω+ϕu)-≡-min {ω+ϕu, 0},当ω>0时,有-∫ϕu < -ω(u)2dx=∫ϕu < -ω(ω+ϕu)2u2dx,故(ω+ϕu)-≡0。

ω+ϕu≥0,进一步有ϕu≥-ω

性质3)显而易见是成立的。引理3得证。

引理4[2]  泛函G(u, ϕ)∈C1(Hr(R3Dr1, 2(R3), R),且它的临界点为方程(7)的解。

引理5[9]  命题①、②等价:

①(u, ϕu)∈Hr1(R3Dr1, 2(R3)是G(u, ϕ)的临界点;

u$ \tilde I\left( u \right)$的临界点,且ϕ=ϕu

由引理4及引理5可知,若已求得$\tilde I\left( u \right) $的临界点u,那么(u, ϕu)∈Hr1(R3Dr1, 2(R3)即为方程(7)的解。下面求解泛函$\tilde I\left( u \right) $的临界点u

3 定理1的证明

定义1(P-S条件[7])  设IC1(E, R),如果{I(uk)}在R上有界,且当k→∞时,I'(uk)→0在E*中的每一个序列{uk}(ukE, k=1, 2, …)于E中都是列紧集,则称泛函I满足P-S条件。

引理6(山路定理[7])  设E是Banach空间,IC1(E, R)且满足:①I(0)=0时,存在ρ0>0,使得IBρ0(0)≥α>0;②存在外部结点eE\Bρ0(0),使得I(e)≤0。令ΓE中联结0与e的道路集合,即Γ={gC([0, 1], E)|g(0)=0, g(1)=e},再记$ \tilde c = \mathop {\inf }\limits_{g \in \mathit{\Gamma }} \mathop {\max }\limits_{t \in \left[ {0, 1} \right]} I\left( {g\left( t \right)} \right)$,那么有$ \tilde c \ge \alpha $I关于$ \tilde c$有临界序列;如果I进一步再满足P-S条件,则$ \tilde c$I的临界值。为证明山路定理,引入Sobolev嵌入定理及Sobolev紧嵌入定理。

引理7(Sobolev嵌入定理[7])  设ΩRN中的有界区域,则有H01(Ω)↺↺Lp(Ω),其中$ 1 \le p < {2^*} = \frac{{2N}}{{N - 2}}$

引理8(Sobolev紧嵌入定理[10])  当N≥2时,有Hr1(RN)↺↺Lr(RN) (r∈(2, 2*))。

引理9(Ni's不等式[11])  设N≥2,x≠0,则存在$\hat C = \hat C\left( N \right) > 0 $,使得$\left| {u\left( x \right)} \right| \le \hat C{\left| x \right|^{ - \frac{{\left( {N - 2} \right)}}{2}}}{\left\| {\nabla u} \right\|_2}(\forall u \in D_r^{1, 2}({R^N})) $

引理10  设{un}⊂Hr1(R3)是泛函$ \tilde I\left( u \right)$的一个P-S序列,则{un}在Hr1(R3)中有界。

证明  由{un}⊂Hr1(R3)是泛函$ \tilde I\left( u \right)$的一个P-S序列可知存在M>0, 使得$|\tilde I({u_n})| \le M, \tilde I'({u_n}) \to 0 $

由式(10)、(11)得

$ \begin{array}{l} p\tilde I\left( {{u_n}} \right) - \left\langle {\tilde I'\left( {{u_n}} \right), {u_n}} \right\rangle = \left( {\frac{p}{2} - 1} \right)\int_{{R^3}} {\left( {{{\left| {\nabla {u_n}} \right|}^2} + } \right.} \\ \left. {\left( {V\left( x \right) - {\omega ^2}} \right)u_n^2} \right){\rm{d}}x - \omega \left( {\frac{p}{2} - 1} \right)\int_{{R^3}} {u_n^2{\phi _u}{\rm{d}}x} - \\ \lambda \int_{{R^3}} {\left( {p\tilde F\left( {{u_n}} \right) - \tilde f\left( {{u_n}} \right){u_n}} \right){\rm{d}}x} \end{array} $

再由条件③、⑤、p∈[4, 6)及引理3,有

$ \begin{array}{l} p\tilde I\left( {{u_n}} \right) - \left\langle {\tilde I'\left( {{u_n}} \right), {u_n}} \right\rangle \ge \left( {\frac{p}{2} - 1} \right)\int_{{R^3}} {\left\{ {{{\left| {\nabla {u_n}} \right|}^2} + } \right.} \\ \left. {\left[ {V\left( x \right) - {\omega ^2}} \right]u_n^2} \right\}{\rm{d}}x \ge {{\hat C}_1}\left\| {{u_n}} \right\|_{H_r^1}^2 \end{array} $ (12)

又由假设得

$ \begin{array}{l} p\tilde I\left( {{u_n}} \right) - \left\langle {\tilde I'\left( {{u_n}} \right), {u_n}} \right\rangle \le p\left| {\tilde I\left( {{u_n}} \right)} \right| + \left| {\left\langle {\tilde I'\left( {{u_n}} \right), } \right.} \right.\\ \left. {\left. {{u_n}} \right\rangle } \right| \le pM + \varepsilon {\left\| {{u_n}} \right\|_{H_r^1}} \end{array} $ (13)

式中ε为任意小的数。最后由式(12)、(13)得${{\hat C}_1}\left\| {{u_n}} \right\|_{H_r^1}^2 \le pM + \varepsilon {\left\| {{u_n}} \right\|_{H_r^1}} $

故知{un}在Hr1(R3)中有界。引理10得证。

引理11  $\tilde I\left( u \right) $满足P-S条件。

证明  因为$ \tilde I\left( u \right)$C1(Hr1(R3), R),所以设{un}⊂Hr1(R3)是泛函$\tilde I\left( u \right) $的一个P-S序列,如果{un}在Hr1(R3)中存在一个收敛的子序列,则能证出$\tilde I\left( u \right) $满足P-S条件。

由引理10知,{un}在Hr1(R3)中有界,则通过对{un}进行选子列可知,存在uHr1(R3)使得在Hr1(R3)中有unu;继而由引理8得,在Lr(R3)中有unu(2 < r < 6),即式(14)成立

$ \begin{array}{l} \left\langle {\tilde I'\left( {{u_n}} \right) - \tilde I'\left( u \right), {u_n} - u} \right\rangle = \int_{{R^3}} {\left( {{{\left| {\nabla \left( {{u_n} - u} \right)} \right|}^2} + } \right.} \\ \left. {\left( {V\left( x \right) - {\omega ^2}} \right){{\left( {{u_n} - u} \right)}^2}} \right){\rm{d}}x - \omega \int_{{R^3}} {\left( {{\phi _{{u_n}}}{u_n} - {\phi _u}u} \right)\left( {{u_n} - } \right.} \\ \left. u \right){\rm{d}}x - \lambda \int_{{R^3}} {\left( {\tilde f\left( {{u_n}} \right) - \tilde f\left( u \right)} \right)\left( {{u_n} - u} \right){\rm{d}}x} = \\ {{\bar C}_2}\left\| {{u_n} - u} \right\|_{H_r^1}^2 - \omega \int_{{R^3}} {\left( {{\phi _{{u_n}}}{u_n} - {\phi _u}u} \right)\left( {{u_n} - u} \right){\rm{d}}x} - \\ \lambda \int_{{R^3}} {\left( {\tilde f\left( {{u_n}} \right) - \tilde f\left( u \right)} \right)\left( {{u_n} - u} \right){\rm{d}}x} \end{array} $ (14)

再由Hölder不等式及引理8得式(15)、(16)

$ \begin{array}{l} \int_{{R^3}} {\left( {{\phi _{{u_n}}}{u_n} - {\phi _u}u} \right)\left( {{u_n} - u} \right){\rm{d}}x} = \int_{{R^3}} {{\phi _{{u_n}}}} \\ {\left( {{u_n} - u} \right)^2}{\rm{d}}x + \int_{{R^3}} {\left( {{\phi _{{u_n}}} - {\phi _u}} \right)u\left( {{u_n} - u} \right){\rm{d}}x} \le {\left\| {{\phi _{{u_n}}}} \right\|_6}\\ \left\| {{u_n} - u} \right\|_{\frac{{12}}{5}}^2 + {\left\| {{\phi _{{u_n}}} - {\phi _u}} \right\|_6}{\left\| u \right\|_{\frac{{12}}{5}}}{\left\| {{u_n} - u} \right\|_{\frac{{12}}{5}}} \to 0 \end{array} $ (15)
$ \begin{array}{l} \int_{{R^3}} {\left( {\tilde f\left( {{u_n}} \right) - \tilde f\left( u \right)} \right)\left( {{u_n} - u} \right){\rm{d}}x} \le \int_{{R^3}} {\left( {\left| {\tilde f\left( {{u_n}} \right)} \right| + } \right.} \\ \left. {\left( {\left| {\tilde f\left( u \right)} \right|} \right)} \right)\left| {{u_n} - u} \right|{\rm{d}}x \le \int_{{R^3}} {{C_{13}}\left( {{{\left| {{u_n}} \right|}^{p - 1}} + {{\left| u \right|}^{p - 1}}} \right)} \\ \left| {{u_n} - u} \right|{\rm{d}}x \le {{\bar C}_{13}}\left( {\left\| {{u_n}} \right\|_p^{p - 1}{{\left\| {{u_n} - u} \right\|}_p} + \left\| u \right\|_p^{p - 1}} \right.\\ \left. {{{\left\| {{u_n} - u} \right\|}_p}} \right) \to 0 \end{array} $ (16)

式中4≤p < 6。

最后将式(15)、(16)带入式(14)得

$ o\left( 1 \right) = \left\| {{u_n} - u} \right\|_{H_r^1}^2 + o\left( 1 \right) $

故在Hr1(R3)中,有unu成立。引理11得证。

引理12  泛函$\tilde I\left( u \right) $满足山路定理。

证明  首先,由式(10)得$\tilde I\left( 0 \right)=0 $=0, 由引理3得

$ \begin{array}{l} \tilde I\left( u \right) \ge {C_3}\left\| u \right\|_{H_r^1}^2 - \lambda \int_{{R^3}} {\tilde F\left( u \right){\rm{d}}x} \ge {C_3}\left\| u \right\|_{H_r^1}^2 - \\ \lambda {C_1}\left\| u \right\|_p^p \end{array} $ (17)

由引理8得

$ {\left\| u \right\|_p} \le {{\tilde C}_1}{\left\| u \right\|_{H_r^1}} $ (18)

将式(18)带入式(17)得

$ \tilde I\left( u \right) \ge {C_4}\left\| u \right\|_{H_r^1}^2 - \lambda {{\tilde C}_2}\left\| u \right\|_{H_r^1}^p $ (19)

那么,由式(19)可知,存在参数αρ0,使得$\tilde I\left( u \right) $α;且对uHr1(R3),有‖uHr1=ρ0

其次,取定u0Hr1(R3),且u0≠0,则有

$ \begin{array}{l} \tilde I\left( {t{u_0}} \right) \le {C_5}{t^2}\left\| {{u_0}} \right\|_{H_r^1}^2 - \lambda {C_6}{t^p}\left\| {{u_0}} \right\|_p^p \to - \infty \\ \left( {t \to + \infty } \right) \end{array} $

故可取充分大的t>0,使得e=tu0满足‖eHr1>ρ0I(e)≤0。引理12得证。

综上,由引理11知$\tilde I\left( u \right) $满足P-S条件,则得$ \tilde c$$\tilde I\left( u \right) $的临界值,u$\tilde I\left( u \right) $的临界点;由引理4、5可知,(u, ϕu)∈Hr1(R3Dr1, 2(R3)为方程(7)的解;由引理1、4、5可知,如果证出‖u < δ成立,就可得(u, ϕu)∈Hr1(R3Dr1, 2(R3)也为方程(1)的解,即定理1得证。故以下只需证出‖u < δ即可证出定理1。

4 解的L估计

引理13  假设uHr1(R3)为$\tilde I\left( u \right) $的临界点,那么有‖u2Hr1$ \tilde C\tilde I\left( u \right)$,其中$\tilde C $为常数。

证明  由式(11)易知

$ \left\langle {\tilde I'\left( u \right), u} \right\rangle = 0 $ (20)

所以由式(10)、(20)及引理1可得

$ \begin{array}{l} \left( {\frac{1}{2} - \frac{1}{\theta }} \right)\int_{{R^3}} {\left( {{{\left| {\nabla u} \right|}^2} + \left( {V\left( x \right) - {\omega ^2}} \right){u^2}} \right){\rm{d}}x} - \\ \left( {\frac{1}{2} - \frac{1}{\theta }} \right)\int_{{R^3}} {\omega {\phi _u}{u^2}{\rm{d}}x} - \lambda \int_{{R^3}} {\left( {\tilde F\left( u \right) - \frac{1}{\theta }\tilde f\left( u \right)u} \right)} \\ {\rm{d}}x = \tilde I\left( u \right) \end{array} $ (21)

由式(21)可得$ {C_7}\left| {\left| u \right|} \right|_{H_r^1}^2 \le \tilde I\left( u \right)$,故$\left| {\left| u \right|} \right|_{H_r^1}^2 \le \tilde C\tilde I\left( u \right) $(C7, ${\tilde C} $为常数)。引理13得证。

引理14  定义$c = \mathop {\inf }\limits_{u > 0} \mathop {\sup }\limits_{0 \le t < \infty } \tilde I\left( {tu} \right) $,则存在C*>0,使得$ c < {C_*}{\lambda ^{ - \frac{2}{{p - 2}}}}$

证明  由引理1得

$ \left\{ {\begin{array}{*{20}{c}} \begin{array}{l} \tilde F\left( u \right) \ge F\left( u \right) \ge {C_1}{\left| u \right|^p}, \\ \tilde F\left( u \right) = {C_2}{\left| u \right|^p}, \end{array}&\begin{array}{l} \left| u \right| \le \delta \\ \left| u \right| > 2\delta \end{array} \end{array}} \right. $

定义新的泛函

$ \begin{array}{l} J\left( u \right) = \frac{1}{2}\int_{{R^3}} {\left( {{{\left| {\nabla u} \right|}^2} + V\left( x \right){u^2}} \right){\rm{d}}x} - \frac{1}{2}\int_{{R^3}} {\left( {{\omega ^2} + } \right.} \\ \left. {\omega {\phi _u}} \right){u^2}{\rm{d}}x - \lambda \int_{{R^3}} {{{\bar C}_1}{{\left| u \right|}^p}{\rm{d}}x} \end{array} $ (22)

式中C1=min {C1, C2}。由式(5)、(10)、(22)得

$ \tilde I\left( u \right) \le J\left( u \right) $ (23)

那么,由式(23)可得

$ \begin{array}{l} c = \mathop {\inf }\limits_{u > 0} \mathop {\sup }\limits_{0 \le t < \infty } \tilde I\left( {tu} \right) \le \mathop {\inf }\limits_{0 < u \le 2\delta } \mathop {\sup }\limits_{0 \le t < \infty } \tilde I\left( {tu} \right) \le \mathop {\inf }\limits_{0 < u \le 2\delta } \\ \mathop {\sup }\limits_{0 \le t < \infty } J\left( {tu} \right) \end{array} $ (24)

又因$J\left( {tu} \right) = \frac{{{t^2}}}{2}{\smallint _{{R^3}}}({\left| {\nabla u} \right|^2} + V\left( x \right){u^2}){\rm{d}}x - \frac{{{t^2}}}{2} $$ {\smallint _{{R^3}}}({\omega ^2} + \omega {\phi _u}){u^2}{\rm{d}}x - \lambda {t^p}{\smallint _{{R^3}}}{{\bar C}_1}{\left| u \right|^p}{\rm{d}}x$,所以由引理3可得

$ \begin{array}{l} J\left( {tu} \right) \le \frac{{{t^2}}}{2}\int_{{R^3}} {\left( {{{\left| {\nabla u} \right|}^2} + \left( {V\left( x \right) - {\omega ^2}} \right){u^2}} \right){\rm{d}}x} - \\ \lambda {t^p}\int_{{R^3}} {{{\bar C}_1}{{\left| u \right|}^p}{\rm{d}}x} = \frac{{{t^2}}}{2}\left\| u \right\|_{H_r^1}^2 - \lambda {t^p}{{\bar C}_1}\left\| u \right\|_p^p = {C_8}\frac{{{t^2}}}{2} - \\ {C_9}\lambda {t^p} \le {C_ * }{\lambda ^{ - \frac{2}{{p - 2}}}} \end{array} $ (25)

式(25)中C8C9C*为常数。故由式(24)、(25)得$c < {C_*}{\lambda ^{ - \frac{2}{{p - 2}}}} $。引理14得证。

引理15  设uHr1(R3)为泛函$\tilde I\left( u \right) $的临界点,那么存在参数Λ>0,使得λ>Λ时,有‖u < δ

证明  由引理13、14、$ \tilde I\left( u \right)$=c$ {\tilde c}$c$ {\left\| u \right\|_{H_r^1}} \le {(\tilde C{C_*})^{\frac{1}{2}}}{\lambda ^{ - \frac{1}{{p - 2}}}} \to 0\left( {\lambda \to \infty } \right)$,由引理9知,对于uDr1, 2(R3),有

$ \begin{array}{l} {\left\| u \right\|_D} \le \hat C{\left| x \right|^{ - \frac{1}{2}}}{\left\| {\nabla u} \right\|_2} \le \hat C{\left| x \right|^{ - \frac{1}{2}}}{\left\| u \right\|_{H_r^1}} \le \hat C\\ {\left| x \right|^{ - \frac{1}{2}}}{\left( {\tilde C{C_ * }} \right)^{\frac{1}{2}}}{\lambda ^{ - \frac{1}{{p - 2}}}} = {C_{10}}{\left| x \right|^{ - \frac{1}{2}}}{\lambda ^{ - \frac{1}{{p - 2}}}} \end{array} $ (26)

式(26)中,x≠0,$ {C_{10}} = \hat C{(\tilde C{C_*})^{\frac{1}{2}}}$。所以当|x|→+∞时,对于所有的λ>0有u→0,由此可知存在R>0,对于所有的λ>1,有‖uL(BRc(0))≤δ;又由椭圆估计得,当λ→∞时,‖uL(BR(0))→0;最终,找到参数Λ>0,使得对于λ>Λ,有‖u < δ。引理15得证。

综上,证得‖u < δ,即(u, ϕu)∈Hr1(R3Dr1, 2(R3)为方程(1)的解;再由引理3及引理13、14、15得,当λ→∞时,‖uHr1→0,‖ϕuD→0。

定理1得证。证毕。

参考文献
[1]
BENCI V, FORTUNATO D. The nonlinear Klein-Gordon equation coupled with the Maxwell equations[J]. Nonlinear Analysis, 2001, 47(9): 6065-6072. DOI:10.1016/S0362-546X(01)00688-5
[2]
BENCI V, FORTUNATO D. Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations[J]. Reviews in Mathematical Physics, 2002, 14(4): 409-420. DOI:10.1142/S0129055X02001168
[3]
D'APRILE T, MUGNAI D. Non-existence results for the coupled Klein-Gordon-Maxwell equations[J]. Advanced Nonlinear Studies, 2004, 4(3): 307-322.
[4]
CASSANI D. Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with Maxwell's equations[J]. Nonlinear Analysis, 2004, 58(7): 733-747.
[5]
CARRIAO P C, CUNHA P L, MIYAGAKI O H. Positive ground state solutions for the critical Klein-Gordon-Maxwell system with potentials[J]. Nonlinear Analysis, 2012, 75(10): 4068-4078. DOI:10.1016/j.na.2012.02.023
[6]
JING Y T, LIU Z L. Elliptic systems with a partially sublinear local term[J]. Journal of Mathematical Study, 2015, 48(3): 290-305. DOI:10.4208/jms
[7]
陆文端. 微分方程中的变分方法[M]. 北京: 北京科技出版社, 2003.
LU W D. The variational method in differential equations[M]. Beijing: Beijing Science and Technology Press, 2003. (in Chinese)
[8]
COSTAD G, WANG Z Q. Multiplicity results for a class of superlinear elliptic problems[J]. Proceedings of the American Mathematical Society, 2005, 133(3): 787-794. DOI:10.1090/S0002-9939-04-07635-X
[9]
D'APRILE T, MUGNAI D. Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations[J]. Proceedings of the Royal Society of Edinburgh:Section A Mathematics, 2004, 134(5): 893-906. DOI:10.1017/S030821050000353X
[10]
BADIALEM, SERRA E. Semilinear elliptic equations for beginners[M]. London: Springer-Verlag London Limited, 2011.
[11]
NI W M. A nonlinear Dirichlet problem on the unit ball and its applications[J]. Indiana University Mathematics Journal, 1982, 31(6): 801-807. DOI:10.1512/iumj.1982.31.31056