文章快速检索     高级检索
  北京化工大学学报(自然科学版)  2019, Vol. 46 Issue (2): 113-117   DOI: 10.13543/j.bhxbzr.2019.02.017
0

引用本文  

王秋实, 兰光强. 中立型时滞随机微分方程数值解的指数稳定性[J]. 北京化工大学学报(自然科学版), 2019, 46(2): 113-117. DOI: 10.13543/j.bhxbzr.2019.02.017.
WANG QiuShi, LAN GuangQiang. Exponential stability of numerical solutions for neutral stochastic differential delay equations[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2019, 46(2): 113-117. DOI: 10.13543/j.bhxbzr.2019.02.017.

基金项目

国家自然科学基金(11601025)

第一作者

王秋实, 女, 1994年生, 硕士生.

通信联系人

兰光强, E-mail:langq@mail.buct.edu.cn

文章历史

收稿日期:2018-04-02
中立型时滞随机微分方程数值解的指数稳定性
王秋实 , 兰光强     
北京化工大学 理学院, 北京 100029
摘要:讨论了中立型时滞随机微分方程向后欧拉与前后欧拉数值解的几乎处处渐近指数稳定性,结果表明,在给定条件下,对于任意初值,用向后欧拉方法与前后欧拉方法得到非线性中立型时滞随机微分方程的数值解都是几乎处处渐近指数稳定的。
关键词中立型时滞随机微分方程    几乎处处指数稳定性    向后欧拉方法    前后欧拉方法    
Exponential stability of numerical solutions for neutral stochastic differential delay equations
WANG QiuShi , LAN GuangQiang     
Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, China
Abstract: Almost sure asymptotically exponential stabilities of backward and forward-backward Euler methods for neutral stochastic differential delay equations are discussed in this paper. For some given conditions and any initial condition, numerical solutions of backward and forward-backward Euler methods for neutral stochastic differential delay equations display almost sure asymptotically exponential stability.
Key words: neutral stochastic differential delay equations    almost sure exponential stability    backward Euler methods    forward-backward Euler methods    
引言

随机微分方程的稳定性一般是指解对于初值的稳定性,简单来说,稳定性表现了当系统的初始状态或者系统中的元素遇到了细小变化时系统的不灵敏度。对于一个稳定的系统,如果在特定的瞬间轨迹相互之间很接近,那么在后继的瞬间也会持续保持这样接近的状态。在稳定性概念中,指数稳定性是最重要的概念之一,在各领域的问题研究中也有较多的应用[1-4]。由于很难得到随机微分方程具体的解析解,一般会用各种数值方法求得随机微分方程的近似解,所以研究这些数值解的稳定性是十分必要的。Higham等[5]研究了随机微分方程经典和向后欧拉方法数值解的矩稳定性和几乎处处稳定性;Wu等[6]研究了时滞随机微分方程经典欧拉方法数值解的几乎处处稳定性;Hu等[7]研究了随机微分方程截断EM方法数值解的渐进稳定性。

Milosevic[8]研究了中立型时滞随机微分方程几种隐式数值方法的收敛性和向后欧拉解的几乎处处渐近稳定性,在稳定性方面将漂移项和扩散项系数分开考虑,对每个系数设定了严格的增长性限制。本文在文献[8]基础上将两个系数放入同一个式子考虑,降低了对每个系数增长性的限制,并且不同于文献[8]的常数滞后项,本文考虑的是滞后项依赖于时间的情况,最后得到了向后欧拉方法和前后欧拉方法的几乎处处渐进稳定性。

1 基本假设与定义

$ (\mathit{\Omega }, \mathscr{F}, {\{ {\mathscr{F}_t}\} _{t \ge 0}}, P)$是一个完备的概率空间,子流$ {\{ {\mathscr{F}_t}\} _{t \ge 0}}$满足常规条件:递增且右连续,$ \mathscr{F}_0$包含所有的零测集。

已知ω(t)=(ω1(t), ω2(t), …ωn(t))T是一个$ \mathscr{F}_t$可测的n维标准布朗运动并与$\mathscr{F}_0 $独立。令|·|代表欧氏范数,将矩阵B的迹xtrace(BTB)简写为|B|2。对于一个给定的τ>0,定义C([-τ, 0];Rd)为从[-τ, 0]到Rd的连续函数φ的函数族,令δ:[0, +∞)→[0, τ]为一个Borel可测的时滞函数。引入中立型随机微分方程如下

$ \begin{array}{l} {\rm{d}}\left[ {\mathit{\boldsymbol{x}}\left( t \right) - u\left( {\mathit{\boldsymbol{x}}\left( {t - \delta \left( t \right)} \right)} \right)} \right] = f\left( {\mathit{\boldsymbol{x}}\left( t \right), \mathit{\boldsymbol{x}}\left( {t - } \right.} \right.\\ \left. {\left. {\delta \left( t \right)} \right)} \right){\rm{d}}t + g\left( {\mathit{\boldsymbol{x}}\left( t \right), \mathit{\boldsymbol{x}}\left( {t - \delta \left( t \right)} \right)} \right){\rm{d}}\mathit{\boldsymbol{\omega }}\left( t \right), t \ge 0 \end{array} $ (1)

式(1)满足初值条件x0=ξ={ξ(θ), θ∈[-τ, 0]},且$ {\mathit{\boldsymbol{x}}_0} \in C_{{\mathscr{F}_0}}^b(\left[ { - \tau , 0} \right];{{\bf{R}}^d})$;同时函数fgu满足

$ \left\{ \begin{array}{l} f:{{\bf{R}}^d} \times {{\bf{R}}^d} \to {{\bf{R}}^d}\\ g:{{\bf{R}}^d} \times {{\bf{R}}^d} \to {{\bf{R}}^{d \times n}}\\ u:{{\bf{R}}^d} \to {{\bf{R}}^d} \end{array} \right. $

为了保证式(1)解的存在唯一性,给出以下4个假设条件。

H1:对于任意正整数i,存在一个正的常数Ki,使得对于任意的x1, x2, y1, y2Rd,且当|x1|∨|x2|∨|y1|∨|y2|≤i时,都有

$ \begin{array}{l} {\left| {f\left( {{\mathit{\boldsymbol{x}}_1}, {\mathit{\boldsymbol{y}}_1}} \right) - f\left( {{\mathit{\boldsymbol{x}}_2}, {\mathit{\boldsymbol{y}}_2}} \right)} \right|^2} \vee \left| {g\left( {{\mathit{\boldsymbol{x}}_1}, {\mathit{\boldsymbol{y}}_1}} \right) - g\left( {{\mathit{\boldsymbol{x}}_2}, } \right.} \right.\\ {\left. {\left. {{\mathit{\boldsymbol{y}}_2}} \right)} \right|^2} \le {K_i}\left( {{{\left| {{\mathit{\boldsymbol{x}}_2} - {\mathit{\boldsymbol{x}}_1}} \right|}^2} + {{\left| {{\mathit{\boldsymbol{y}}_2} - {\mathit{\boldsymbol{y}}_1}} \right|}^2}} \right) \end{array} $

成立。

H2:存在常数β∈(0, 1),对任意xyRd,都有|u(x)-u(y)|≤β|x-y|;假设u(0)=0,则有|u(x)|≤β|x|。

H3:函数δ是连续可微的,且δ′(t)≤δ < 1。

H4:存在函数VC2, 1(Rd×[-τ, +∞]; R+)、UC(Rd×[-τ, +∞]; R+)和c1, c2, c3, c4>0,使得$ {c_4} > \frac{{{c_3}}}{{1 - \bar \delta }}$成立;以及对任意xyRdt≥0,都有式(2)成立

$ \begin{array}{l} {c_1}{\left| {\mathit{\boldsymbol{x}}\left( t \right)} \right|^p} \le V\left( {\mathit{\boldsymbol{x}}\left( t \right)} \right) \le {c_2}{\left| {\mathit{\boldsymbol{x}}\left( t \right)} \right|^p}{V_t}\left( {\mathit{\boldsymbol{x}}\left( t \right) - u} \right.\\ \left. {\left( {\mathit{\boldsymbol{y}}\left( t \right)} \right)} \right) + {V_\mathit{\boldsymbol{x}}}\left( {\mathit{\boldsymbol{x}}\left( t \right) - u\left( {\mathit{\boldsymbol{y}}\left( t \right)} \right)} \right)f\left( {\mathit{\boldsymbol{x}}\left( t \right), \mathit{\boldsymbol{y}}\left( t \right)} \right) + \frac{1}{2}\\ {x_{{\rm{trace}}}}\left[ {g{{\left( {\mathit{\boldsymbol{x}}\left( t \right), \mathit{\boldsymbol{y}}\left( t \right)} \right)}^{\rm{T}}}{V_{xx}}\left( {\mathit{\boldsymbol{x}}\left( t \right) - u\left( {\mathit{\boldsymbol{y}}\left( t \right)} \right)} \right)g\left( {\mathit{\boldsymbol{x}}\left( t \right), } \right.} \right.\\ \left. {\left. {\mathit{\boldsymbol{y}}\left( t \right)} \right)} \right] \le {c_3}\left[ {1 + V\left( {\mathit{\boldsymbol{x}}\left( t \right)} \right) + V\left( {\mathit{\boldsymbol{y}}\left( {t - \delta \left( t \right)} \right)} \right)} \right] - {c_4}\\ U\left( {\mathit{\boldsymbol{x}}\left( t \right)} \right) \end{array} $ (2)

定理1[9]  若条件H1~H4成立,那么对任意初值$ {\mathit{\boldsymbol{x}}_0} \in C_{{\mathscr{F}_0}}^b(\left[ { - \tau , 0} \right];{{\bf{R}}^d})$,式(1)的整体解x={x(t), t∈[-τ, +∞)}存在且唯一,并满足

$ EV\left( {\mathit{\boldsymbol{x}}\left( t \right)} \right) < \infty , E\int_0^t {U\left( {\mathit{\boldsymbol{x}}\left( s \right)} \right){\rm{d}}s} < \infty , t \ge 0 $

为了得到本文的最终结论,还需要以下假设条件和引理。

H5:存在一个正的常数η,使得

|δ(t)-δ(s)|≤η|t-s|, t, s≥0成立。

H6:存在正的常数λ1λ2,满足λ1>(((1-η)-1)+1)λ2,使得2(x-u(y))Tf(x, y)+|g(x, y)|2≤-λ1|x|2+ λ2|y|2成立。

引理1[10]  在条件H5成立的情况下,对于任意非负整数i,令i-[δ()/Δ]=a,那么

$ * \left\{ {i:i - \left[ {\delta \left( {j\Delta } \right)/\Delta } \right] = a} \right\} \le \left[ {{{\left( {1 - \eta } \right)}^{ - 1}}} \right] + 1 $ (3)

式(3)中,[δ()/Δ]表示δ()/Δ的整数部分,*{A}表示集合A中元素的个数。

引理2[8]  令{Ai}、{Ui}(i=1, 2, …)为两列非负随机向量,且AiUi都是$\mathscr{F}_{i-1} $可测的,A0=U0=0 a.s.;令Mi为一个实值局部鞅,M0=0;令{Xi}是一个非负的半鞅且满足Xi=ξ+Ai-Ui+Mi,其中ξ为一个非负$ \mathscr{F}_0$可测的随机变量。若$ \mathop {\lim }\limits_{i \to \infty } {A_i} < \infty \;a.s.$,那么就有$\mathop {\lim }\limits_{i \to \infty } {X_i} < \infty $,且$\mathop {\lim }\limits_{i \to \infty } {U_i} < \infty $

$ \Delta = \frac{\tau }{N}$,其中N为大于τ的整数,则Δ∈(0,1)。

定义1[8](向后欧拉方法)  定义向后欧拉数值解yk

$ \left\{ \begin{array}{l} {\mathit{\boldsymbol{y}}_k} = \mathit{\boldsymbol{\xi }}\left( {k\Delta } \right), k = - N, - N + 1, \cdots , 0\\ {\mathit{\boldsymbol{y}}_k} = {\mathit{\boldsymbol{y}}_{k - 1}} + u\left( {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right) - \\ \;\;\;\;\;\;\;u\left( {{\mathit{\boldsymbol{y}}_{\left( {k - 1} \right) - \left[ {\delta \left( {\left( {k - 1} \right)\Delta } \right)/\Delta } \right]}}} \right) + \\ \;\;\;\;\;\;\;f\left( {{\mathit{\boldsymbol{y}}_k}, {\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)\Delta + \\ \;\;\;\;\;\;\;g\left( {{\mathit{\boldsymbol{y}}_{k - 1}}, {\mathit{\boldsymbol{y}}_{k - 1 - \left[ {\delta \left( {\left( {k - 1} \right)\Delta } \right)/\Delta } \right]}}} \right)\Delta {\mathit{\boldsymbol{\omega }}_{k - 1}}, \\ \;\;\;\;\;\;\;k = 1, 2, \cdots \end{array} \right. $ (4)

式(4)中,Δωk-1=ω()-ω((k-1)Δ)。

定义2[8](前后欧拉方法)  定义前后欧拉数值解yk

$ \left\{ \begin{array}{l} {{\mathit{\boldsymbol{\bar y}}}_k} = \mathit{\boldsymbol{\xi }}\left( {k\Delta } \right), k = - N, - N + 1, \cdots , 0\\ {{\mathit{\boldsymbol{\bar y}}}_k} = {{\mathit{\boldsymbol{\bar y}}}_{k - 1}} + u\left( {{{\mathit{\boldsymbol{\bar y}}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right) - \\ \;\;\;\;\;\;\;u\left( {{{\mathit{\boldsymbol{\bar y}}}_{\left( {k - 1} \right) - \left[ {\delta \left( {\left( {k - 1} \right)\Delta } \right)/\Delta } \right]}}} \right) + \\ \;\;\;\;\;\;\;f\left( {{\mathit{\boldsymbol{y}}_{k - 1}}, {\mathit{\boldsymbol{y}}_{k - 1 - \left[ {\delta \left( {\left( {k - 1} \right)\Delta } \right)/\Delta } \right]}}} \right)\Delta + \\ \;\;\;\;\;\;\;g\left( {{\mathit{\boldsymbol{y}}_{k - 1}}, {\mathit{\boldsymbol{y}}_{k - 1 - \left[ {\delta \left( {\left( {k - 1} \right)\Delta } \right)/\Delta } \right]}}} \right)\Delta {\mathit{\boldsymbol{\omega }}_{k - 1}}, \\ \;\;\;\;\;\;\;k = 1, 2, \cdots \end{array} \right. $ (5)

定义3[6](几乎处处渐近指数稳定)  若存在一个常数ε0>0,使得数值解qk满足$ \mathop {\lim \sup }\limits_{k \to + \infty } \frac{{\lg |{\mathit{\boldsymbol{q}}_k}|}}{{k\Delta }} \le - {\varepsilon _0}\;a.s.$,那么qk是几乎处处渐近指数稳定的。

2 主要结果及证明

定理2  在条件H1~H6成立情况下,用向后欧拉方法得到的数值解yk和用前后欧拉方法得到的数值解yk是几乎处处渐近指数稳定的。

证明  首先证明yk的几乎处处渐进稳定性。

由式(4)得到

$ \begin{array}{l} {\left| {{\mathit{\boldsymbol{y}}_k} - u\left( {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|^2} \le \left| {{\mathit{\boldsymbol{y}}_k} - u\left( {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|\\ f\left( {{\mathit{\boldsymbol{y}}_k}, {\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)\Delta + \frac{1}{2}{\left| {{\mathit{\boldsymbol{y}}_k} - u\left( {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|^2} + \frac{1}{2}\\ {\left| {{\mathit{\boldsymbol{y}}_{k - 1}} - u\left( {{\mathit{\boldsymbol{y}}_{\left( {k - 1} \right) - \left[ {\delta \left( {\left( {k - 1} \right)\Delta } \right)/\Delta } \right]}}} \right)} \right|^2} + \frac{1}{2}\left| {g\left( {{\mathit{\boldsymbol{y}}_k}, } \right.} \right.\\ {\left. {\left. {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|^2}\Delta + {m_{k - 1}} \end{array} $ (6)

式(6)中

$ \begin{array}{l} {m_{k - 1}} = \frac{1}{5}{\left| {g\left( {{\mathit{\boldsymbol{y}}_{k - 1}}, {\mathit{\boldsymbol{y}}_{\left( {k - 1} \right) - \left[ {\delta \left( {\left( {k - 1} \right)\Delta } \right)/\Delta } \right]}}} \right)\Delta {\mathit{\boldsymbol{\omega }}_{k - 1}}} \right|^2} - \\ \frac{1}{2}{\left| {g\left( {{\mathit{\boldsymbol{y}}_k}, {\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|^2}\Delta + \left\langle {{\mathit{\boldsymbol{y}}_{k - 1}} - } \right.\\ \mathit{\boldsymbol{u}}\left( {{\mathit{\boldsymbol{y}}_{\left( {k - 1} \right) - \left[ {\delta \left( {\left( {k - 1} \right)\Delta } \right)/\Delta } \right]}}} \right), g\left( {{\mathit{\boldsymbol{y}}_{k - 1}}, {\mathit{\boldsymbol{y}}_{\left( {k - 1} \right) - \left[ {\delta \left( {\left( {k - 1} \right)\Delta } \right)/\Delta } \right]}}} \right)\\ \left. {\Delta {\mathit{\boldsymbol{\omega }}_{k - 1}}} \right\rangle \end{array} $

是一个鞅,且m0=0。

整理式(6)得

$ \begin{array}{l} {\left| {{\mathit{\boldsymbol{y}}_k} - u\left( {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|^2} - \left| {{\mathit{\boldsymbol{y}}_{k - 1}} - } \right.\\ {\left. {u\left( {{\mathit{\boldsymbol{y}}_{\left( {k - 1} \right) - \left( {\delta \left( {\left( {k - 1} \right)\Delta } \right)/\Delta } \right)}}} \right)} \right|^2} \le 2\left| {{\mathit{\boldsymbol{y}}_k} - u\left( {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|f\\ \left( {{\mathit{\boldsymbol{y}}_k}, {\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)\Delta + {\left| {g\left( {{\mathit{\boldsymbol{y}}_k}, {\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|^2}\Delta + 2{m_{k - 1}} \end{array} $

利用H6得到

$ \begin{array}{l} {\left| {{\mathit{\boldsymbol{y}}_k} - u\left( {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|^2} - \left| {{\mathit{\boldsymbol{y}}_{k - 1}} - } \right.\\ {\left. {u\left( {{\mathit{\boldsymbol{y}}_{\left( {k - 1} \right) - \left( {\delta \left( {\left( {k - 1} \right)\Delta } \right)/\Delta } \right)}}} \right)} \right|^2} \le \left( { - {\lambda _1}{{\left| {{\mathit{\boldsymbol{y}}_k}} \right|}^2} + } \right.\\ \left. {{\lambda _2}{{\left| {{y_{k - }}\left( {\delta \left( {k\Delta } \right)/\Delta } \right)} \right|}^2}} \right)\Delta + 2{m_{k - 1}} \end{array} $ (7)

对于任意一个常数C≥1,有

$ \begin{array}{l} {C^{k\Delta }}{\left| {{\mathit{\boldsymbol{y}}_k} - u\left( {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|^2} - {C^{\left( {k - 1} \right)\Delta }}\left| {{\mathit{\boldsymbol{y}}_{k - 1}} - u} \right.\\ {\left. {\left( {{\mathit{\boldsymbol{y}}_{\left( {k - 1} \right) - \left[ {\delta \left( {\left( {k - 1} \right)\Delta } \right)/\Delta } \right]}}} \right)} \right|^2} = {C^{k\Delta }}\left( {{{\left| {{\mathit{\boldsymbol{y}}_k} - u\left( {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|}^2} - } \right.\\ {\left| {{\mathit{\boldsymbol{y}}_{k - 1}} - u\left( {{\mathit{\boldsymbol{y}}_{\left( {k - 1} \right) - \left[ {\delta \left( {\left( {k - 1} \right)\Delta } \right)/\Delta } \right]}}} \right)} \right|^2} + \left( {1 - {C^{ - \Delta }}} \right)\left| {{\mathit{\boldsymbol{y}}_{k - 1}} - } \right.\\ \left. {{{\left. {u\left( {{\mathit{\boldsymbol{y}}_{\left( {k - 1} \right) - \left[ {\delta \left( {\left( {k - 1} \right)\Delta } \right)/\Delta } \right]}}} \right)} \right|}^2}} \right) \end{array} $ (8)

将式(7)代入式(8)中,再利用H2得到

$ \begin{array}{l} {C^{k\Delta }}{\left| {{\mathit{\boldsymbol{y}}_k} - u\left( {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|^2} - {C^{\left( {k - 1} \right)\Delta }}\left| {{\mathit{\boldsymbol{y}}_{k - 1}} - } \right.\\ {\left. {u\left( {{\mathit{\boldsymbol{y}}_{\left( {k - 1} \right) - \left( {\delta \left( {\left( {k - 1} \right)\Delta } \right)/\Delta } \right)}}} \right)} \right|^2} \le {C^{k\Delta }}\left( {\left( { - {\lambda _1}{{\left| {{\mathit{\boldsymbol{y}}_k}} \right|}^2} + } \right.} \right.\\ \left. {{\lambda _2}{{\left| {{\mathit{\boldsymbol{y}}_{k - \left( {\delta \left( {k\Delta } \right)/\Delta } \right)}}} \right|}^2}} \right)\Delta + 2{m_{k - 1}} + \left( {1 - {C^{ - \Delta }}} \right)\left( {2{{\left| {{\mathit{\boldsymbol{y}}_{k - 1}}} \right|}^2} + } \right.\\ \left. {\left. {2{\beta ^2}{{\left| {{\mathit{\boldsymbol{y}}_{\left( {k - 1} \right) - \left( {\delta \left( {\left( {k - 1} \right)\Delta } \right)/\Delta } \right)}}} \right|}^2}} \right)} \right) \end{array} $ (9)

将式(9)迭代得到

$ \begin{array}{l} {C^{k\Delta }}{\left| {{\mathit{\boldsymbol{y}}_k} - u\left( {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|^2} \le {\left| {{\mathit{\boldsymbol{y}}_0} - u\left( {{\mathit{\boldsymbol{y}}_{ - \left[ {\delta \left( 0 \right)/\Delta } \right]}}} \right)} \right|^2} - \\ {\lambda _1}\Delta \sum\limits_{i = 1}^k {{C^{i\Delta }}{{\left| {{\mathit{\boldsymbol{y}}_i}} \right|}^2}} + {\lambda _2}\Delta \sum\limits_{i = 1}^k {{C^{i\Delta }}{{\left| {{\mathit{\boldsymbol{y}}_{i - \left[ {\delta \left( {i\Delta } \right)/\Delta } \right]}}} \right|}^2}} + 2\left( {1 - } \right.\\ \left. {{C^{ - \Delta }}} \right)\sum\limits_{i = 1}^k {{C^{i\Delta }}{{\left| {{\mathit{\boldsymbol{y}}_{i - 1}}} \right|}^2}} + 2{\beta ^2}\left( {1 - {C^{ - \Delta }}} \right)\sum\limits_{i = 1}^k {{C^{i\Delta }}} \\ {\left| {{\mathit{\boldsymbol{y}}_{\left( {i - 1} \right) - \left[ {\delta \left( {\left( {i - 1} \right)\Delta } \right)/\Delta } \right]}}} \right|^2} + {M_k} \end{array} $ (10)

式(10)中$ {M_k} = 2\mathop \sum \limits_{i = 1}^k {C^{i\Delta }}{m_{i - 1}}$为一个鞅, 且M=0。

因为

$ \begin{array}{l} 2\left( {1 - {C^{ - \Delta }}} \right)\sum\limits_{i = 1}^k {{C^{i\Delta }}{{\left| {{\mathit{\boldsymbol{y}}_{i - 1}}} \right|}^2}} = 2\left( {{C^\Delta } - 1} \right)\sum\limits_{i = 1}^k {{C^{i\Delta }}} \\ {\left| {{\mathit{\boldsymbol{y}}_i}} \right|^2} + 2\left( {{C^\Delta } - 1} \right)\left( {{{\left| {{\mathit{\boldsymbol{y}}_0}} \right|}^2} - {C^{k\Delta }}{{\left| {{\mathit{\boldsymbol{y}}_k}} \right|}^2}} \right) \end{array} $
$ \begin{array}{l} 2{\beta ^2}\left( {1 - {C^{ - \Delta }}} \right)\sum\limits_{i = 1}^k {{C^{i\Delta }}{{\left| {{\mathit{\boldsymbol{y}}_{\left( {i - 1} \right) - \left[ {\delta \left( {\left( {i - 1} \right)\Delta } \right)/\Delta } \right]}}} \right|}^2}} = 2{\beta ^2}\\ \left( {{C^\Delta } - 1} \right)\sum\limits_{i = 1}^k {{C^{i\Delta }}{{\left| {{\mathit{\boldsymbol{y}}_{i - \left[ {\delta \left( {i\Delta } \right)/\Delta } \right]}}} \right|}^2}} = 2\left( {{C^\Delta } - 1} \right)\\ \left( {{{\left| {{\mathit{\boldsymbol{y}}_{ - \left[ {\delta \left( 0 \right)/\Delta } \right]}}} \right|}^2} - {C^{k\Delta }}{{\left| {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right|}^2}} \right) \end{array} $

所以式(10)变为

$ \begin{array}{l} {C^{k\Delta }}{\left| {{\mathit{\boldsymbol{y}}_k} - u\left( {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|^2} \le {\left| {{\mathit{\boldsymbol{y}}_0} - u\left( {{\mathit{\boldsymbol{y}}_{ - \left[ {\delta \left( 0 \right)/\Delta } \right]}}} \right)} \right|^2} + \\ 2\left( {{C^\Delta } - 1} \right){\left| {{\mathit{\boldsymbol{y}}_0}} \right|^2} + 2\left( {{C^\Delta } - 1} \right){\left| {{\mathit{\boldsymbol{y}}_{ - \left[ {\delta \left( 0 \right)/\Delta } \right]}}} \right|^2} + \left( { - {\lambda _1}\Delta + } \right.\\ \left. {2\left( {{C^\Delta } - 1} \right)} \right)\sum\limits_{i = 1}^k {{C^{i\Delta }}{{\left| {{\mathit{\boldsymbol{y}}_i}} \right|}^2}} + \left( {{\lambda _2}\Delta + 2{\beta ^2}\left( {{C^\Delta } - } \right.} \right.\\ \left. {\left. 1 \right)} \right)\sum\limits_{i = 1}^k {{C^{i\Delta }}{{\left| {{\mathit{\boldsymbol{y}}_{i - \left[ {\delta \left( {i\Delta } \right)/\Delta } \right]}}} \right|}^2}} + {M_k} \end{array} $ (11)

由引理1可得

$ \begin{array}{l} \sum\limits_{i = 1}^k {{C^{i\Delta }}{{\left| {{\mathit{\boldsymbol{y}}_{i - \left[ {\delta \left( {i\Delta } \right)/\Delta } \right]}}} \right|}^2}} \le \left( {\left[ {{{\left( {1 - \eta } \right)}^{ - 1}}} \right] + 1} \right)\\ {C^\tau }\sum\limits_{i = - N}^k {{C^{i\Delta }}{{\left| {{\mathit{\boldsymbol{y}}_i}} \right|}^2}} \end{array} $

因此式(11)变为

$ \begin{array}{l} {C^{k\Delta }}{\left| {{\mathit{\boldsymbol{y}}_k} - u\left( {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|^2} \le h\left( {C, \Delta } \right)\sum\limits_{i = 1}^k {{C^{i\Delta }}{{\left| {{\mathit{\boldsymbol{y}}_i}} \right|}^2}} + \\ {M_k} + X \end{array} $ (12)

式(12)中

$ \begin{array}{l} X = {\left| {{\mathit{\boldsymbol{y}}_0} - u\left( {{\mathit{\boldsymbol{y}}_{ - \left[ {\delta \left( 0 \right)/\Delta } \right]}}} \right)} \right|^2} + 2\left( {{C^\Delta } - 1} \right){\left| {{\mathit{\boldsymbol{y}}_0}} \right|^2} + \\ 2\left( {{C^\Delta } - 1} \right){\left| {{\mathit{\boldsymbol{y}}_{ - \left[ {\delta \left( 0 \right)/\Delta } \right]}}} \right|^2} + \left( {{\lambda _2}\Delta + 2{\beta ^2}\left( {{C^\Delta } - 1} \right)} \right)\\ \left( {\left( {{{\left( {1 - \eta } \right)}^{ - 1}}} \right) + 1} \right){C^\tau }\sum\limits_{i = - N}^0 {{C^{i\Delta }}{{\left| {\xi \left( {i\Delta } \right)} \right|}^2}} < \infty \end{array} $

h(C, Δ)=-λ1Δ+2(CΔ-1)+(λ2Δ+2β2(CΔ-1))(((1-η)-1)+1)Cτ,可以求得

$ \begin{array}{l} \frac{{\rm{d}}}{{{\rm{d}}C}}h\left( {C, \Delta } \right) = 2\Delta {C^{\Delta - 1}} + \left( {\left( {{{\left( {1 - \eta } \right)}^{ - 1}}} \right) + 1} \right)\\ \left( {{C^\tau }2{\beta ^2}\Delta {C^{\Delta - 1}} + \left( {{\lambda _2}\Delta + 2{\beta ^2}\left( {{C^\Delta } - 1} \right)} \right)\tau {C^{\tau - 1}}} \right) > 0 \end{array} $

H6得到

$ h\left( {1, \Delta } \right) = - {\lambda _1}\Delta + {\lambda _2}\Delta \left( {\left( {{{\left( {1 - \eta } \right)}^{ - 1}}} \right) + 1} \right) < 0 $

因此存在一个C*>1,使得h(C*, Δ)=0,因C*的值与Δ有关,所以式(10)变为

$ C_ * ^{k\Delta }{\left| {{\mathit{\boldsymbol{y}}_k} - u\left( {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|^2} \le X + {M_k} $ (13)

由引理2可得

$ \begin{array}{l} \mathop {\limsup }\limits_{k \to \infty } \left( {C_ * ^{k\Delta }{{\left| {{\mathit{\boldsymbol{y}}_k} - u\left( {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|}^2}} \right) \le \mathop {\limsup }\limits_{k \to \infty } \\ \left( {X + {M_k}} \right) \end{array} $

$\mu = \ln {C_*}, \mathop {\lim }\limits_{\Delta \to 0} \mu = \varepsilon $, 则由式(13)得到

$ \mathop {\limsup }\limits_{k \to \infty } {{\rm{e}}^{\mu k\Delta }}{\left| {{\mathit{\boldsymbol{y}}_k} - u\left( {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|^2} < \infty $

所以对于任意$\sigma \in \left( {0, \frac{\varepsilon }{2}} \right) $,存在常数α,使得

$ \mathop {\limsup }\limits_{k \to \infty } {{\rm{e}}^{\left( {\varepsilon - 2\sigma } \right)k\Delta }}{\left| {{\mathit{\boldsymbol{y}}_k} - u\left( {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|^2} = \alpha $ (14)

对于任意$ \gamma \in \left( {0, - \frac{1}{\tau }\ln \beta \wedge \left( {\varepsilon - 2\sigma } \right)} \right)$,存在整数k1,使得式(15)成立。

$ {{\rm{e}}^{\gamma k\Delta }}{\left| {{\mathit{\boldsymbol{y}}_k} - u\left( {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|^2} \le \alpha + \gamma , k \ge {k_1} $ (15)

因为

$ {\left( {a + b} \right)^p} \le {\left( {1 + c} \right)^{p - 1}}\left( {{a^p} + {c^{1 - p}}{b^p}} \right), a, b > 0, p > \mathit{1}, c > 0 $

$p = 2, c = \frac{\beta }{{1 - \beta }} $,则得到

$ \begin{array}{l} {{\rm{e}}^{\gamma k\Delta }}{\left| {{\mathit{\boldsymbol{y}}_k}} \right|^2} \le {\left( {1 - \beta } \right)^{ - 1}}{{\rm{e}}^{\gamma k\Delta }}{\left| {{\mathit{\boldsymbol{y}}_k} - u\left( {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|^2} + \\ \beta {{\rm{e}}^{\gamma k\Delta }}{\left| {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right|^2} \end{array} $ (16)

因此对任意整数k2k1,有

$ \begin{array}{l} \mathop {\sup }\limits_{{k_1} \le k \le {k_2}} {{\rm{e}}^{\gamma k\Delta }}{\left| {{\mathit{\boldsymbol{y}}_k}} \right|^2} \le {\left( {1 - \beta } \right)^{ - 1}}\left( {\alpha + \gamma } \right) + \beta {{\rm{e}}^{\gamma \tau }}\\ \mathop {\sup }\limits_{{k_1} - N \le k \le {k_1}} {{\rm{e}}^{\gamma k\Delta }}{\left| {{\mathit{\boldsymbol{y}}_k}} \right|^2} + \beta {{\rm{e}}^{\gamma \tau }}\mathop {\sup }\limits_{{k_1} \le k \le {k_2}} {{\rm{e}}^{\gamma k\Delta }}{\left| {{\mathit{\boldsymbol{y}}_k}} \right|^2} \end{array} $

k2→+∞,则得到

$ \begin{array}{l} \mathop {\sup }\limits_{{k_1} \le k < + \infty } {{\rm{e}}^{\gamma k\Delta }}{\left| {{\mathit{\boldsymbol{y}}_k}} \right|^2} \le {\left( {1 - \beta {{\rm{e}}^{\gamma \tau }}} \right)^{ - 1}}\left( {{{\left( {1 - \beta } \right)}^{ - 1}}\left( {\alpha + } \right.} \right.\\ \left. {\left. \gamma \right) + \beta {{\rm{e}}^{\gamma \tau }}\mathop {\sup }\limits_{{k_1} - N \le k \le {k_1}} {{\rm{e}}^{\gamma k\Delta }}{{\left| {{\mathit{\boldsymbol{y}}_k}} \right|}^2}} \right) < \infty \end{array} $

$ \mathop {\lim \sup }\limits_{k \to + \infty } {e^{\gamma k\Delta }}|{\mathit{\boldsymbol{y}}_k}{|^2} < \infty $,可得yk有界。

因此式(16)可以变为

$ \begin{array}{l} \mathop {\lim \sup }\limits_{k \to + \infty } {{\rm{e}}^{\gamma k\Delta }}{\left| {{\mathit{\boldsymbol{y}}_k}} \right|^2} \le {\left( {1 - \beta } \right)^{ - 1}}\alpha + \beta {{\rm{e}}^{\gamma \tau }}\mathop {\lim \sup }\limits_{k \to + \infty } \\ {{\rm{e}}^{\gamma \left( {k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]} \right)\Delta }}{\left| {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right|^2} \end{array} $

进而得到

$ \mathop {\lim \sup }\limits_{k \to + \infty } {{\rm{e}}^{\gamma k\Delta }}{\left| {{\mathit{\boldsymbol{y}}_k}} \right|^2} \le {\left( {1 - \beta {{\rm{e}}^{\gamma \tau }}} \right)^{ - 1}}{\left( {1 - \beta } \right)^{ - 1}}\alpha $

因此得到

$ \mathop {\lim \sup }\limits_{k \to + \infty } \frac{{\ln \left( {{{\rm{e}}^{\gamma k\Delta }}{{\left| {{\mathit{\boldsymbol{y}}_k}} \right|}^2}} \right)}}{{k\Delta }} = \gamma + 2\mathop {\lim \sup }\limits_{k \to + \infty } \frac{{\ln \left| {{\mathit{\boldsymbol{y}}_k}} \right|}}{{k\Delta }} < 0 $ (17)

由式(17)可知$ \mathop {\lim \sup }\limits_{k \to + \infty } \frac{{\ln |{\mathit{\boldsymbol{y}}_k}|}}{{k\Delta }} < - \frac{\gamma }{2}, {\mathit{\boldsymbol{y}}_k}$的几乎处处渐进稳定性得证。

其次证明yk的几乎处处渐进稳定性。

将式(4)、(5)联立得到

$ \begin{array}{l} {{\mathit{\boldsymbol{\bar y}}}_k} - {\mathit{\boldsymbol{y}}_k} = {{\mathit{\boldsymbol{\bar y}}}_{k - 1}} - {\mathit{\boldsymbol{y}}_{k - 1}} + u\left( {{{\mathit{\boldsymbol{\bar y}}}_{k - \left( {\delta \left( {k\Delta } \right)/\Delta } \right)}}} \right) - \\ u\left( {{\mathit{\boldsymbol{y}}_{k - \left( {\delta \left( {k\Delta } \right)/\Delta } \right)}}} \right) - u\left( {{{\mathit{\boldsymbol{\bar y}}}_{\left( {k - 1} \right) - \left[ {\delta \left( {\left( {k - 1} \right)\Delta } \right)/\Delta } \right]}}} \right) + \\ u\left( {{\mathit{\boldsymbol{y}}_{\left( {k - 1} \right) - \left( {\delta \left( {\left( {k - 1} \right)\Delta } \right)/\Delta } \right)}}} \right) + \left( {f\left( {{\mathit{\boldsymbol{y}}_{k - 1}}, {\mathit{\boldsymbol{y}}_{k - 1 - \left[ {\delta \left( {\left( {k - 1} \right)\Delta } \right)/\Delta } \right]}}} \right) - } \right.\\ \left. {f\left( {{\mathit{\boldsymbol{y}}_k}, {\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right)\Delta \end{array} $ (18)

迭代式(18)得到

$ \begin{array}{l} {{\mathit{\boldsymbol{\bar y}}}_k} - u\left( {{{\mathit{\boldsymbol{\bar y}}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right) = {\mathit{\boldsymbol{y}}_k} - u\left( {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right) + \\ \left( {f\left( {{\mathit{\boldsymbol{y}}_0}, {\mathit{\boldsymbol{y}}_{ - \left[ {\delta \left( 0 \right)/\Delta } \right]}}} \right) - f\left( {{\mathit{\boldsymbol{y}}_k}, {\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right)\Delta \end{array} $
$ \begin{array}{l} {\left| {{{\mathit{\boldsymbol{\bar y}}}_k} - u\left( {{{\mathit{\boldsymbol{\bar y}}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|^2} \le 2{\left| {{\mathit{\boldsymbol{y}}_k} - u\left( {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|^2} + \\ 2{\Delta ^2}{\left| {f\left( {{\mathit{\boldsymbol{y}}_0}, {\mathit{\boldsymbol{y}}_{ - \left[ {\delta \left( 0 \right)/\Delta } \right]}}} \right) - f\left( {{\mathit{\boldsymbol{y}}_k}, {\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|^2} \end{array} $

因为yk有界,故由H1可得到

$ \begin{array}{l} {\left| {{{\mathit{\boldsymbol{\bar y}}}_k} - u\left( {{{\mathit{\boldsymbol{\bar y}}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|^2} \le 2{\left| {{\mathit{\boldsymbol{y}}_k} - u\left( {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|^2} + \\ 2{\Delta ^2}{K_i}\left( {{{\left| {{\mathit{\boldsymbol{y}}_k} - {\mathit{\boldsymbol{y}}_0}} \right|}^2} + {{\left| {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}} - {\mathit{\boldsymbol{y}}_{ - \left[ {\delta \left( 0 \right)/\Delta } \right]}}} \right|}^2}} \right) \end{array} $ (19)

对于|yk-y0|2+|yk-[δ()/Δ]-y-[δ(0)/Δ]|2,有

$ \begin{array}{l} \mathop {\lim \sup }\limits_{k \to + \infty } {\left| {{\mathit{\boldsymbol{y}}_k} - {\mathit{\boldsymbol{y}}_0}} \right|^2} + \mathop {\lim \sup }\limits_{k \to + \infty } {\left| {{\mathit{\boldsymbol{y}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}} - {\mathit{\boldsymbol{y}}_{ - \left[ {\delta \left( 0 \right)/\Delta } \right]}}} \right|^2} = \\ 2\mathop {\lim \sup }\limits_{k \to + \infty } {\left| {{\mathit{\boldsymbol{y}}_k} - {\mathit{\boldsymbol{y}}_0}} \right|^2} \le 4\mathop {\lim \sup }\limits_{k \to + \infty } \left( {{{\left| {{\mathit{\boldsymbol{y}}_k}} \right|}^2} + {{\left| {{\mathit{\boldsymbol{y}}_0}} \right|}^2}} \right) \end{array} $

因此式(16)可变为

$ \begin{array}{l} \mathop {\lim \sup }\limits_{k \to + \infty } {{\rm{e}}^{\left( {\varepsilon - 2\sigma } \right)k\Delta }}{\left| {{{\mathit{\boldsymbol{\bar y}}}_k} - u\left( {{{\mathit{\boldsymbol{\bar y}}}_{k - \left[ {\delta \left( {k\Delta } \right)/\Delta } \right]}}} \right)} \right|^2} \le 2\alpha + \\ 8{\Delta ^2}{K_i}\mathop {\lim \sup }\limits_{k \to + \infty } {{\rm{e}}^{\left( {\varepsilon - 2\sigma } \right)k\Delta }}\left( {{{\left| {{\mathit{\boldsymbol{y}}_k}} \right|}^2} + {{\left| {{\mathit{\boldsymbol{y}}_0}} \right|}^2}} \right) = \bar \alpha < \infty \end{array} $

之后方法与证明yk几乎处处渐进稳定性的方法完全相同,可以证得yk也具有几乎处处渐近指数稳定性。定理2得证。证毕。

3 实例分析

考虑如下一维中立型时滞随机微分方程

$ \begin{array}{l} {\rm{d}}\left[ {\mathit{\boldsymbol{x}}\left( t \right) - \frac{1}{9}\mathit{\boldsymbol{x}}\left( {t - \delta \left( t \right)} \right)} \right] = \left( { - 6\mathit{\boldsymbol{x}}\left( t \right) + } \right.\\ \left. {\frac{{\mathit{\boldsymbol{x}}\left( {t - \delta \left( t \right)} \right)}}{{1 + {{\left| {\mathit{\boldsymbol{x}}\left( {t - \delta \left( t \right)} \right)} \right|}^2}}}} \right){\rm{d}}t + \mathit{\boldsymbol{x}}\left( t \right)\sin {\left| {\mathit{\boldsymbol{x}}\left( {t - \delta \left( t \right)} \right)} \right|^2}\\ {\rm{d}}\mathit{\boldsymbol{\omega }}\left( t \right), t \ge 0 \end{array} $ (20)

式(20)中,初值x0=ξ(θ)=1, θ∈[-τ, 0], τ=2, δ(t)=1-sin t, t≥0。显然漂移项和扩散项系数满足H1,中立项$ u(\mathit{\boldsymbol{x}}) = \frac{1}{9}\mathit{\boldsymbol{x}}$满足H2,且$ \delta '\left( t \right) = - \frac{1}{4}\cos t \le \frac{1}{4} = \bar \delta $$\eta = \frac{1}{4} $满足H3H5;同时对于任意x, yRd,都有

$ \begin{array}{l} 2{\left( {\mathit{\boldsymbol{x}} - u\left( \mathit{\boldsymbol{y}} \right)} \right)^f}\left( {\mathit{\boldsymbol{x}}, \mathit{\boldsymbol{y}}} \right) + {\left| {g\left( {\mathit{\boldsymbol{x}}, \mathit{\boldsymbol{y}}} \right)} \right|^2} = 2\left( {\mathit{\boldsymbol{x}} - \frac{1}{9}\mathit{\boldsymbol{y}}} \right)\\ \left( { - 6\mathit{\boldsymbol{x}} + \frac{\mathit{\boldsymbol{y}}}{{1 + {{\left| \mathit{\boldsymbol{y}} \right|}^2}}}} \right) \le - \frac{{31}}{3}{\left| \mathit{\boldsymbol{x}} \right|^2} + \frac{{17}}{9}{\left| \mathit{\boldsymbol{y}} \right|^2} \end{array} $

即满足H6

$\Delta = 0.1, {Y_k} = \frac{{\ln |{\mathit{\boldsymbol{y}}_k}|}}{{k\Delta }}, {\bar Y_k} = \frac{{\ln |{{\mathit{\boldsymbol{\bar y}}}_k}|}}{{k\Delta }} $, 利用Matlab作图如图 1所示。可以看出,随着k的增大,YkYk都是逐渐趋于稳定的,符合几乎处处渐近指数稳定的定义。

图 1 kYkYk的关系 Fig.1 The relationship between k and Yk, Yk
4 结束语

通过研究中立型时滞随机微分方程的向后欧拉数值解和前后欧拉数值解的几乎处处渐近指数稳定性,结果表明,与文献[8]相比,本文的漂移项和扩散项系数更加具有普遍性;并通过构造合理的假设条件,将文献[8]中的结果推广到时滞项依赖于时间的情况;最后通过具体的实例分析进一步证明了该结果的有效性。

参考文献
[1]
MAO X R. Stochastic differential equations and applications[M]. 2nd ed. Chichester: Horwood Publishing Limited, 2007.
[2]
KHASMINSKII R. Stochastic stability of differential equations[M]. 2nd ed. Heidelberg: Springer-VerLag, 2012.
[3]
MAO X R. Stability and stabilisation of stochastic differential equations[J]. Control Theory and Applications, 2007, 1(6): 1551-1566. DOI:10.1049/iet-cta:20070006
[4]
MAO X R. Stochastic stabilization and destabilization[J]. Systems and Control Letters, 1994, 23(4): 279-290. DOI:10.1016/0167-6911(94)90050-7
[5]
HIGHAM D J, MAO X R, YUAN C G. Almost sure and moment exponential stability in the numerical simulation of stochastic differential equations[J]. SIAM J Number Anal, 2007, 45(2): 592-609. DOI:10.1137/060658138
[6]
WU F K, MAO X R, SZPRUCH L. Almost sure exponential stability of numerical solutions for stochastic delay differential equations[J]. Numerische Mathematik, 2010, 115(4): 681-697. DOI:10.1007/s00211-010-0294-7
[7]
HU L J, LI X Y, MAO X R. Convergence rate and stability of the truncated Euler-Maruyama method for stochastic differential equations[J]. Journal of Computational and Applied Mathematics, 2018, 337: 274-289. DOI:10.1016/j.cam.2018.01.017
[8]
MILOSEVIC M. Convergence and almost sure exponential stability of implicit numerical methods for a class of highly nonlinear neutral stochastic differential equations with constant delay[J]. Journal of Computational and Applied Mathematics, 2015, 280: 248-264. DOI:10.1016/j.cam.2014.12.002
[9]
MILOSEVIC M. Highly nonlinear neutral stochastic differential equations with time-dependent delay and the Euler-Maruyama method[J]. Journal of Computational and Applied Mathematics, 2011, 54: 2235-2251.
[10]
MILOSEVIC M. Almost sure exponential stability of solutions to highly nonlinear neutral stochastic differential equations with time-dependent delay and the Euler-Maruyama approximation[J]. Journal of Computational and Applied Mathematics, 2013, 57: 887-899.