文章快速检索     高级检索
  北京化工大学学报(自然科学版)  2018, Vol. 45 Issue (2): 105-108   DOI: 10.13543/j.bhxbzr.2018.02.018
0

引用本文  

吴巧云, 刘佳乐, 崔丽鸿. 基于MRA的流形小波双框架刻画[J]. 北京化工大学学报(自然科学版), 2018, 45(2): 105-108. DOI: 10.13543/j.bhxbzr.2018.02.018.
WU QiaoYun, LIU JiaLe, CUI LiHong. Bi-framelets mra-based characterizations on manifolds[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2018, 45(2): 105-108. DOI: 10.13543/j.bhxbzr.2018.02.018.

第一作者

吴巧云, 女, 1992年生, 硕士生.

通信联系人

崔丽鸿, E-mail:cuilh@mail.buct.edu.cn

文章历史

收稿日期:2017-11-11
基于MRA的流形小波双框架刻画
吴巧云 , 刘佳乐 , 崔丽鸿     
北京化工大学 理学院, 北京 100029
摘要:研究了光滑紧致黎曼流形多尺度表示系统——小波双框架的构造和刻画。具体地,给定经典小波框架生成集和流形正交基,实现了流形平方可积空间中一列框架小波系统对双框架性质的刻画。
关键词多分辨分析(MRA)    小波双框架    流形正交基    紧致黎曼流形    Laplace-Beltrami算子    
Bi-framelets MRA-based characterizations on manifolds
WU QiaoYun , LIU JiaLe , CUI LiHong     
Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, China
Abstract: This work investigates the construction and characterizations of multiscale representation systems, namely bi-framelets on a smooth and compact Riemannian manifold. Specifically, given classical framelet generating sets and an orthonomal basis on a manifold, characterizations of the bi-framelet of a sequence of framelet system pairs are provided for the space of square integrable functions on a manifold.
Key words: multiresolution analysis(MRA)    bi-framelets    orthonomal basis on a manifold    compact Riemannian manifold    Laplace-Beltrami operator    
引言

相比经典小波, 非平面域上小波和小波框架能有效处理和分析数量庞大的非结构化数据集,在实际应用中也取得了理想的结果[1-2]。Hammond等[3]利用图谱理论推广了经典小波概念,首次提出频谱图小波变换(SGWT),开启了非平面域上小波研究的新阶段。Narang等[4]利用图正交镜像滤波器消除了二部图中谱折叠产生的混叠现象,推导出二部图滤波器组正交性的充要条件,通过刻画二部图两通道小波滤波器组的完全重构,实现了对定义在任意有限无向赋权二部图顶点上的函数分析。Dong[5]基于多分辨分析(MRA)引入了流形紧小波框架和图紧小波框架的刻画,相比频谱图小波变换,实例验证了快速图紧小波框架变换(WFTG)处理图数据的高效性。

但是以上文献主要研究非平面域上小波和紧小波框架,关于流形小波双框架的研究还未见报道。本文受文献[4]和[5]的研究启发,在文献[5]的工作基础上进一步研究,将其刻画思想推广到小波双框架,首先在流形上提出了小波双框架概念;其次,利用多分辨分析(MRA)滤波器组,重点研究了流形上小波双框架的构造和刻画,得到了一些等价性质。

1 流形小波双框架的相关概念

设流形$\mathscr{M}$是一个概率测度为μ(μ($\mathscr{M}$)=1), 光滑边界(或边界是空集)为Sd(d≥2)维紧致连续光滑黎曼流形。空间L2($\mathscr{M}$):=L2($\mathscr{M}$, μ)是流形$\mathscr{M}$上关于测度μ的复值平方可积函数空间,其中fL2($\mathscr{M}$)的L2范数为‖fL2($\mathscr{M}$)=($\int_{\mathscr{M}}$|f(x)|2dμ(x))1/2。对于fgL2($\mathscr{M}$),L2($\mathscr{M}$)是一个具有内积〈f, gL2($\mathscr{M}$)=$\int_{\mathscr{M}}$f(x)g(x)dμ(x)的希尔伯特空间,其中g是函数g的共轭。

将序列对{(u$\ell$, λ$\ell$)}$\ell$=0称为空间L2($\mathscr{M}$)的正交特征对,其中序列{u$\ell$}$\ell$=0u0≡1的空间L2($\mathscr{M}$)的正交基,序列{λ$\ell$}$\ell$=0是满足0=λ0λ1≤…和$\mathop {\lim }\limits_{\ell \to \infty } {\mkern 1mu} $λ$\ell$=∞的非负递增数列。一个典型特例就是,{(u$\ell$, λ$\ell$)}$\ell$=0是流形$\mathscr{M}$上满足关系式Δu$\ell$=-λ$\ell$2u$\ell$的Laplace-Beltrami算子Δ的特征函数和特征值集合。函数fL2($\mathscr{M}$)的傅里叶变换${{{\hat{f}}}_\ell}$${{{\hat{f}}}_\ell}$:=〈f, u$\ell$L2($\mathscr{M}$)。设L1($\mathbb{R}$)是实数集$\mathbb{R}$上关于勒贝格测度的绝对值可积函数空间,Ψ:={α; β1, …, βr}是空间L1($\mathbb{R}$)中的函数族。

类似于经典小波集,连续框架小波φj, y(x)和ψj, yn(x)在尺度j处的伸缩和顶点y$\mathscr{M}$处的平移分别如式(1)、(2)[6-7]

$ {\varphi _{j,\mathit{\boldsymbol{y}}}}\left( \mathit{\boldsymbol{x}} \right) = \sum\limits_{\ell = 0}^\infty {\hat \alpha \left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right){{\bar u}_\ell }\left( \mathit{\boldsymbol{y}} \right){u_\ell }\left( \mathit{\boldsymbol{x}} \right)} $ (1)
$ \psi _{j,\mathit{\boldsymbol{y}}}^n\left( \mathit{\boldsymbol{x}} \right) = \sum\limits_{\ell = 0}^\infty {{{\hat \beta }^n}\left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right){{\bar u}_\ell }\left( \mathit{\boldsymbol{y}} \right){u_\ell }\left( \mathit{\boldsymbol{x}} \right)} ,n = 1, \cdots ,r $ (2)

流形$\mathscr{M}$上的连续框架小波系统CFSJ(Ψ)(始于尺度J$\mathbb{Z}$)是一个如式(3)的非齐次仿射系统[8-9]

$ \begin{array}{l} CF{S_J}\left( \mathit{\Psi } \right) = CF{S_J}\left\{ {\alpha ;{\beta ^1}, \cdots ,{\beta ^r}} \right\} = \left\{ {{\varphi _{J,\mathit{\boldsymbol{y}}}}:\mathit{\boldsymbol{y}} \in \mathscr{M}} \right\} \cup \\ \left\{ {\psi _{j,\mathit{\boldsymbol{y}}}^1, \cdots ,\psi _{j,\mathit{\boldsymbol{y}}}^r:\mathit{\boldsymbol{y}} \in \mathscr{M},j \ge J} \right\} \end{array} $ (3)

定义1  设Ψ={α; β1, …, βr}⊂L1($\mathbb{R}$)和${\mathit{\tilde \Psi }}=\left\{ \tilde{\alpha };{{{\tilde{\beta }}}^{1}}, \cdots, {{{\tilde{\beta }}}^{r}} \right\}\subset {{L}_{1}}\left( \mathbb{R} \right)$是两列小波父母向量函数,如果条件1)~3)同时满足

1) CFSJ(Ψ)和CFSJ(${\mathit{\tilde \Psi }}$)在空间L2($\mathscr{M}$)中;

2) CFSJ(Ψ)和CFSJ(${\mathit{\tilde \Psi }}$)都是空间L2($\mathscr{M}$)中的小波框架;

3) 在L2-范数下,任意函数fL2($\mathscr{M}$)都满足完全重构表达式

$ \begin{array}{l} f = \int_\mathscr{M} {\left\langle {f,{\varphi _{J,\mathit{\boldsymbol{y}}}}} \right\rangle {{\tilde \varphi }_{J,\mathit{\boldsymbol{y}}}}{\rm{d}}\mu \left( \mathit{\boldsymbol{y}} \right)} + \sum\limits_{j = J}^\infty {\sum\limits_{n = 1}^r {\int_\mathscr{M} {\left\langle {f,\psi _{j,\mathit{\boldsymbol{y}}}^n} \right\rangle } } } \\ \tilde \psi _{j,\mathit{\boldsymbol{y}}}^n{\rm{d}}\mu \left( \mathit{\boldsymbol{y}} \right) \end{array} $ (4)

或者等价于式(5)

$ \begin{array}{l} \left\| f \right\|_{{L_2}\left( \mathscr{M} \right)}^2 = \int_\mathscr{M} {\left\langle {f,{\varphi _{J,\mathit{\boldsymbol{y}}}}} \right\rangle \left\langle {{{\tilde \varphi }_{J,\mathit{\boldsymbol{y}}}},f} \right\rangle {\rm{d}}\mu \left( \mathit{\boldsymbol{y}} \right)} + \\ \sum\limits_{j = J}^\infty {\sum\limits_{n = 1}^r {\int_\mathscr{M} {\left\langle {f,\psi _{j,\mathit{\boldsymbol{y}}}^n} \right\rangle \left\langle {\tilde \psi _{j,\mathit{\boldsymbol{y}}}^n,f} \right\rangle {\rm{d}}\mu \left( \mathit{\boldsymbol{y}} \right)} } } \end{array} $ (5)

则称系统对(CFSJ(Ψ), CFSJ(${\mathit{\tilde \Psi }}$))是空间L2($\mathscr{M}$)中的连续小波双框架。特别地,若Ψ=${\mathit{\tilde \Psi }}$,则称系统对(CFSJ(Ψ), CFSJ(${\mathit{\tilde \Psi }}$))是空间L2($\mathscr{M}$)中的连续紧小波框架,记作CFSJ(Ψ)。

本文主要研究的是空间L2($\mathscr{M}$)中基于MRA的小波双框架构造,所以在此引入MRA滤波器组η:={a; b1, …, br}⊂l1($\mathbb{Z}$)和$\tilde{\eta }:=\left\{ \tilde{a};{{{\tilde{b}}}_{1}}, \cdots, {{{\tilde{b}}}_{r}} \right\}\subset {{l}_{1}}\left( \mathbb{Z} \right)$,使得它们分别能完全确定Ψ${\mathit{\tilde \Psi }}$,即(Ψ, ${\mathit{\tilde \Psi }}$)中函数傅里叶变换和(η, ${\tilde{\eta }}$)中滤波器傅里叶级数满足关系式(6)和(7)

$ \hat \alpha \left( {2\xi } \right) = \hat \alpha \left( \xi \right)\hat \alpha \left( \xi \right),{{\hat \beta }^n}\left( {2\xi } \right) = {{\hat b}_n}\left( \xi \right)\hat \alpha \left( \xi \right) $ (6)
$ \begin{align} & \ \ \ \ \hat{\tilde{\alpha }}\left( 2\xi \right)=\hat{\tilde{\alpha }}\left( \xi \right)\hat{\tilde{\alpha }}\left( \xi \right),{{{\hat{\tilde{\beta }}}}^{n}}\left( 2\xi \right)={{{\hat{\tilde{b}}}}_{n}}\left( \xi \right)\hat{\tilde{\alpha }}\left( \xi \right),n= \\ & 1,\cdots ,r,\xi \in \mathbb{R} \\ \end{align} $ (7)
2 流形小波双框架的等价刻画

基于文献[5]中流形紧小波框架的刻画研究,本文得出定理1。

定理1  设J0$\mathbb{Z}$是整数,η:={a; b1, …, br}⊂ l1($\mathbb{Z}$)和$\tilde{\eta }:=\left\{ \tilde{a};{{{\tilde{b}}}_{1}}, \cdots, {{{\tilde{b}}}_{r}} \right\}\subset {{l}_{1}}\left( \mathbb{Z} \right)$分别是系统Ψ:= {α; β1, …, βr}⊂L1($\mathbb{R}$)和${\mathit{\tilde \Psi }}=\left\{ \tilde{\alpha };{{{\tilde{\beta }}}^{1}}, \cdots, {{{\tilde{\beta }}}^{r}} \right\}\subset {{L}_{1}}\left( \mathbb{R} \right)$的MRA结合系数,其中r≥1;CFSJ(Ψ)和CFSJ(${\mathit{\tilde \Psi }}$)是具有框架小波φj, y${\tilde \varphi } _{j, \mathit{\boldsymbol{y}}}$ψj, yn${\mathit{\tilde \psi }}_{j, \mathit{\boldsymbol{y}}}^{n}$的连续框架小波系统,其中JJ0。假设${\hat{\alpha }}$${\hat{\tilde{\alpha }}}$在原点处连续,对于任意的y$\mathscr{M}$n=1, …, rjJ0,都有:φj, y${\tilde \varphi } _{j, \mathit{\boldsymbol{y}}}^{n}$ψj, yn${\mathit{\tilde \psi }}_{j, \mathit{\boldsymbol{y}}}$是空间L2($\mathscr{M}$)中的函数,且相关系统CFSJ(Ψ)和CFSJ(${\mathit{\tilde \Psi }}$)也是空间L2($\mathscr{M}$)中的小波框架。那么,下列结论(ⅰ)~(ⅴ)彼此等价。

(ⅰ)对于任意JJ0,系统对(CFSJ(Ψ), CFSJ(${\mathit{\tilde \Psi }}$))是空间L2($\mathscr{M}$)中的连续小波双框架;

(ⅱ)对于任意fL2($\mathscr{M}$),恒等式(8)、(9)成立

$ \mathop {\lim }\limits_{j \to \infty } {\left\| {\int_\mathscr{M} {\left\langle {f,{\varphi _{J,\mathit{\boldsymbol{y}}}}} \right\rangle {{\tilde \varphi }_{J,\mathit{\boldsymbol{y}}}}{\rm{d}}\mu \left( \mathit{\boldsymbol{y}} \right) - f} } \right\|_{{L_2}\left( \mathscr{M} \right)}} = 0 $ (8)
$ \begin{array}{l} \int_\mathscr{M} {\left\langle {f,{\varphi _{j + 1,\mathit{\boldsymbol{y}}}}} \right\rangle {{\tilde \varphi }_{j + 1,\mathit{\boldsymbol{y}}}}{\rm{d}}\mu \left( \mathit{\boldsymbol{y}} \right)} = \int_\mathscr{M} {\left\langle {f,{\varphi _{J,\mathit{\boldsymbol{y}}}}} \right\rangle {{\tilde \varphi }_{J,\mathit{\boldsymbol{y}}}}{\rm{d}}\mu } \\ \left( \mathit{\boldsymbol{y}} \right) + \int_\mathscr{M} {\sum\limits_{n = 1}^r {\left\langle {f,\psi _{j,\mathit{\boldsymbol{y}}}^n} \right\rangle \tilde \psi _{j,\mathit{\boldsymbol{y}}}^n{\rm{d}}\mu } \left( \mathit{\boldsymbol{y}} \right)} ,j \ge {J_0} \end{array} $ (9)

(ⅲ)对于任意fL2($\mathscr{M}$),恒等式(10)、(11)成立

$ \mathop {\lim }\limits_{j \to \infty } \int_\mathscr{M} {\left\langle {f,{\varphi _{j,\mathit{\boldsymbol{y}}}}} \right\rangle \left\langle {{{\tilde \varphi }_{j,\mathit{\boldsymbol{y}}}},f} \right\rangle {\rm{d}}\mu \left( \mathit{\boldsymbol{y}} \right)} = \left\| f \right\|_{{L_2}\left( \mathscr{M} \right)}^2 $ (10)
$ \begin{array}{l} \int_\mathscr{M} {\left\langle {f,{\varphi _{j + 1,\mathit{\boldsymbol{y}}}}} \right\rangle \left\langle {{{\tilde \varphi }_{j + 1,\mathit{\boldsymbol{y}}}},f} \right\rangle {\rm{d}}\mu \left( \mathit{\boldsymbol{y}} \right)} = \int_\mathscr{M} {\left\langle {f,{\varphi _{J,\mathit{\boldsymbol{y}}}}} \right\rangle \left\langle {{{\tilde \varphi }_{J,\mathit{\boldsymbol{y}}}},} \right.} \\ \left. f \right\rangle {\rm{d}}\mu \left( \mathit{\boldsymbol{y}} \right) + \int_\mathscr{M} {\sum\limits_{n = 1}^r {\left\langle {f,\psi _{j,\mathit{\boldsymbol{y}}}^n} \right\rangle \left\langle {\tilde \psi _{j,\mathit{\boldsymbol{y}}}^n,f} \right\rangle {\rm{d}}\mu \left( \mathit{\boldsymbol{y}} \right)} } ,j \ge {J_0} \end{array} $ (11)

(ⅳ)Ψ${\mathit{\tilde \Psi }}$中的函数满足

$ \mathop {\lim }\limits_{j \to \infty } \bar {\hat \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right)\hat {\tilde \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right) = 1,\ell \ge 0 $ (12)
$ \begin{array}{l} \bar {\hat \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right)\hat {\tilde \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right) + \sum\limits_{n = 1}^r {{{\bar {\hat \beta} }^n}\left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right){{\hat {\tilde \beta }}^n}\left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right)} = \bar {\hat \alpha} \\ \left( {\frac{{{\lambda _\ell }}}{{{2^{j + 1}}}}} \right)\hat {\tilde \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^{j + 1}}}}} \right),\ell \ge 0,j \ge {J_0} \end{array} $ (13)

(ⅴ)尺度函数α${\tilde{\alpha }}$满足式(12),且滤波器组η${\tilde{\eta }}$中的滤波器满足式(14)

$ \begin{array}{l} \bar {\hat \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right)\hat {\tilde \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right) + \sum\limits_{n = 1}^r {{{\bar {\hat b}}_n}\left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right){{\bar {\hat b}}_n}\left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right)} = 1,\\ \forall \ell \in \sigma _{\bar {\hat \alpha} ,\hat {\tilde \alpha} }^j,\forall j \ge {J_0} + 1 \end{array} $ (14)

其中$\sigma _{\bar{\hat{\alpha }}, \hat{\tilde{\alpha }}}^{j}=\left\{ \ell \in {{\mathbb{N}}_{0}}:\bar{\hat{\alpha }}\left( \frac{{{\lambda }_{\ell }}}{{{2}^{j}}} \right)\hat{\tilde{\alpha }}\left( \frac{{{\lambda }_{\ell }}}{{{2}^{j}}} \right)\ne 0 \right\}, $${{\mathbb{N}}_{0}}=\mathbb{N}\cup \left\{ 0 \right\}$

证明  情况① (ⅰ)$\Leftrightarrow $(ⅱ)。

对于任意JJ0,系统对(CFSJ(Ψ), CFSJ(${\mathit{\tilde \Psi }}$))都是空间L2($\mathscr{M}$)中的连续小波双框架,则对任意fL2($\mathscr{M}$),JJ0,等式(15)都成立

$ \begin{array}{l} f = \int_\mathscr{M} {\left\langle {f,{\varphi _{J,\mathit{\boldsymbol{y}}}}} \right\rangle {{\tilde \varphi }_{J,\mathit{\boldsymbol{y}}}}{\rm{d}}\mu } \left( \mathit{\boldsymbol{y}} \right) + \sum\limits_{j = J}^\infty {\sum\limits_{n = 1}^r {\int_\mathscr{M} {\left\langle {f,\psi _{j,\mathit{\boldsymbol{y}}}^n} \right\rangle } } } \\ \tilde \psi _{j,\mathit{\boldsymbol{y}}}^n{\rm{d}}\mu \left( \mathit{\boldsymbol{y}} \right) = \int_\mathscr{M} {\left\langle {f,{\varphi _{J + 1,\mathit{\boldsymbol{y}}}}} \right\rangle {{\tilde \varphi }_{J + 1,\mathit{\boldsymbol{y}}}}{\rm{d}}\mu } \left( \mathit{\boldsymbol{y}} \right) + \sum\limits_{j = J + 1}^\infty {\sum\limits_{n = 1}^r {} } \\ \int_\mathscr{M} {\left\langle {f,\psi _{j,\mathit{\boldsymbol{y}}}^n} \right\rangle \tilde \psi _{j,\mathit{\boldsymbol{y}}}^n{\rm{d}}\mu \left( \mathit{\boldsymbol{y}} \right)} \end{array} $ (15)

同时可有

$ \begin{array}{l} \int_\mathscr{M} {\left\langle {f,{\varphi _{J + 1,\mathit{\boldsymbol{y}}}}} \right\rangle {{\tilde \varphi }_{J + 1,\mathit{\boldsymbol{y}}}}{\rm{d}}\mu } \left( \mathit{\boldsymbol{y}} \right) = \int_\mathscr{M} {\left\langle {f,{\varphi _{J,\mathit{\boldsymbol{y}}}}} \right\rangle {{\tilde \varphi }_{J,\mathit{\boldsymbol{y}}}}{\rm{d}}\mu } \\ \left( \mathit{\boldsymbol{y}} \right) + \sum\limits_{n = 1}^r {\int_\mathscr{M} {\left\langle {f,\psi _{J,\mathit{\boldsymbol{y}}}^n} \right\rangle \tilde \psi _{J,\mathit{\boldsymbol{y}}}^n{\rm{d}}\mu \left( \mathit{\boldsymbol{y}} \right)} } \end{array} $

故式(9)成立。

为方便计算,定义算子$\mathscr{P}{{\nu}_{j}}$$\mathscr{P}w_{j}^{n}$如式(16)

$ \left\{ \begin{array}{l} \mathscr{P}{\nu _j}\left( f \right): = \int_\mathscr{M} {\left\langle {f,{\varphi _{j,\mathit{\boldsymbol{y}}}}} \right\rangle {{\tilde \varphi }_{j,\mathit{\boldsymbol{y}}}}{\rm{d}}\mu } \left( \mathit{\boldsymbol{y}} \right)\\ \mathscr{P}w_j^n\left( f \right): = \int_\mathscr{M} {\left\langle {f,\psi _{j,\mathit{\boldsymbol{y}}}^n} \right\rangle \tilde \psi _{j,\mathit{\boldsymbol{y}}}^n{\rm{d}}\mu } \left( \mathit{\boldsymbol{y}} \right) \end{array} \right.,f \in {L_2}\left( \mathscr{M} \right) $ (16)

由式(9)得

$ \mathscr{P}{\nu _{m + 1}}\left( f \right) = \mathscr{P}{\nu _J}\left( f \right) + \sum\limits_{j = J}^m {\sum\limits_{n = 1}^r {\mathscr{P}w_j^n\left( f \right)} } ,\forall m \ge J,\forall J \ge {J_0} $ (17)

m→∞,则在L2-范数下有

$ \mathop {\lim }\limits_{m \to \infty } \mathscr{P}{\nu _{m + 1}}\left( f \right) = \mathscr{P}{\nu _J}\left( f \right) + \sum\limits_{j = J}^\infty {\sum\limits_{n = 1}^r {\mathscr{P}w_j^n\left( f \right)} } = f $

故式(8)成立,进一步可得(ⅰ)$\Rightarrow $(ⅱ)。

相反地,由式(9)显然有式(17)成立,通过式(8)在式(17)等号两边对m取极限,有

$ \mathop {\lim }\limits_{m \to \infty } \mathscr{P}{\nu _{m + 1}}\left( f \right) = f = \mathscr{P}{\nu _J}\left( f \right) + \sum\limits_{j = J}^\infty {\sum\limits_{n = 1}^r {\mathscr{P}w_j^n\left( f \right)} } $

由此可得(ⅱ)$\Rightarrow $(ⅰ)成立。情况①得证。

情况② (ⅱ)$\Leftrightarrow $(ⅲ)。

(ⅱ)与(ⅲ)之间的等价性可由极化恒等式性质直接得到。情况②得证。

情况③ (ⅱ)$\Leftrightarrow $(ⅳ)。

通过式(1)、(2)和u$\ell$的正交性,可以得到式(18)、(19)

$ \begin{array}{l} \left\langle {f,{\varphi _{j,\mathit{\boldsymbol{y}}}}} \right\rangle = \left\langle {f,\sum\limits_{\ell = 0}^\infty {\hat \alpha \left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right){{\bar u}_\ell }\left( \mathit{\boldsymbol{y}} \right){u_\ell }} } \right\rangle = \sum\limits_{\ell = 0}^\infty {\bar {\hat \alpha} } \\ \left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right){u_\ell }\left( \mathit{\boldsymbol{y}} \right){\hat f_\ell } \end{array} $ (18)
$ \begin{array}{l} \left\langle {f,\psi _{j,\mathit{\boldsymbol{y}}}^n} \right\rangle = \left\langle {f,\sum\limits_{\ell = 0}^\infty {{{\hat \beta }^n}\left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right){{\bar u}_\ell }\left( \mathit{\boldsymbol{y}} \right){u_\ell }} } \right\rangle = \sum\limits_{\ell = 0}^\infty {} \\ {{\bar {\hat \beta }}^n}\left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right){u_\ell }\left( \mathit{\boldsymbol{y}} \right){{\hat f}_\ell } \end{array} $ (19)

再结合式(1)、(2)、(18)和(19),式(16)在傅里叶域中可以等价为式(20)

$ \left\{ \begin{gathered} {\left( {\mathscr{P}{{\hat \nu }_j}\left( f \right)} \right)_\ell } = \bar {\hat \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right)\hat {\tilde \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right){{\hat f}_\ell } \hfill \\ {\left( {\mathscr{P}\hat w_j^n\left( f \right)} \right)_\ell } = {{\bar {\hat \beta }}^n}\left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right){{\hat {\tilde \beta }}^n}\left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right){{\hat f}_\ell } \hfill \\ \end{gathered} \right.,\ell \in {\mathbb{N}_0} $ (20)

故通过式(20)和帕塞瓦夫恒等式可以得到

$ \begin{array}{*{20}{c}} {\left\| {\mathscr{P}{{\hat \nu }_j}\left( f \right) - f} \right\|_{{L_2}\left( \mathscr{M} \right)}^2 = }\\ {\sum\limits_{\ell = 0}^\infty {{{\left( {\bar {\hat \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right)\hat {\tilde \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right) - 1} \right)}^2}{{\left| {{{\hat f}_\ell }} \right|}^2}} } \end{array} $ (21)

那么在条件(8)下,令式(21)中的j→∞,则有

$ \begin{array}{l} \mathop {\lim }\limits_{j \to \infty } \left\| {\mathscr{P}{\nu _j}\left( f \right) - f} \right\|_{{L_2}\left( \mathscr{M} \right)}^2 = \mathop {\lim }\limits_{j \to \infty } \sum\limits_{\ell = 0}^\infty {\left( {\bar {\hat \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right)\hat {\tilde \alpha} } \right.} \\ {\left. {\left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right) - 1} \right)^2}{\left| {{{\hat f}_\ell }} \right|^2} = 0 \end{array} $

所以当j→∞时,式(21)等号右边的每一项都必须趋向于0,即对于任意$\ell$≥0,有$\mathop {\lim }\limits_{j \to \infty } {\mkern 1mu} \bar{\hat{\alpha }}\left( \frac{{{\lambda }_{\ell }}}{{{2}^{j}}} \right)\hat{\tilde{\alpha }}\left( \frac{{{\lambda }_{\ell }}}{{{2}^{j}}} \right)=1$。所以式(8)$\Rightarrow $式(12)。

另一方面,当任意$\ell$≥0且$\mathop {\lim }\limits_{j \to \infty } {\mkern 1mu} \bar{\hat{\alpha }}\left( \frac{{{\lambda }_{\ell }}}{{{2}^{j}}} \right)\hat{\tilde{\alpha }}\left( \frac{{{\lambda }_{\ell }}}{{{2}^{j}}} \right)=1$时,由${\hat{\alpha }}$${\hat{\tilde{\alpha }}}$在原点处的连续性和勒贝格控制收敛定理,有$\mathop {\lim }\limits_{j \to \infty } {\mkern 1mu} \left\| \mathscr{P}{{\mathit{\boldsymbol{v}}}_{j}}\left( f \right)-f \right\|_{{{L}_{2}}\left( \mathscr{M} \right)}^{2}$,故式(12)$\Rightarrow $式(8)。根据式(20),式(9)在傅里叶域中可等价为

$ \begin{gathered} \bar {\hat \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^{j + 1}}}}} \right)\hat {\tilde \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^{j + 1}}}}} \right){{\hat f}_\ell } = \bar {\hat \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right)\hat {\tilde \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right){{\hat f}_\ell } + \sum\limits_{n = 1}^r {{{\bar {\hat \beta} }^n}} \hfill \\ \left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right){{\hat {\tilde \beta} }^n}\left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right){{\hat f}_\ell },\ell \in {\mathbb{N}_0} \hfill \\ \end{gathered} $ (22)

由式(22)得出(9)$\Rightarrow $(13)。

同时,因任意函数fL2($\mathscr{M}$)在空间L2($\mathscr{M}$)中都有傅里叶展开式$f=\sum\limits_{\ell =0}^{\infty }{{{{\hat{f}}}_{\ell }}{{u}_{\ell }}}$,则结合式(13)和(20)可推出式(9)成立。

由此可得(ⅱ)$\Leftrightarrow $(ⅳ)。情况③得证。

情况④ (ⅳ)$\Leftrightarrow $(ⅴ)。

由式(6)、(7)中的关系式可得,对于$\ell$≥0和jJ0,都有

$ \begin{array}{l} \bar {\hat \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right)\hat {\tilde \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right) + \sum\limits_{n = 1}^r {{{\bar {\hat \beta }}^n}\left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right){{\hat {\tilde \beta} }^n}\left( {\frac{{{\lambda _\ell }}}{{{2^j}}}} \right)} = \bar {\hat \alpha} \\ \left( {\frac{{{\lambda _\ell }}}{{{2^{j + 1}}}}} \right)\bar {\hat \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^{j + 1}}}}} \right)\hat {\tilde \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^{j + 1}}}}} \right)\hat {\tilde \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^{j + 1}}}}} \right) + \sum\limits_{n = 1}^r {{{\bar {\hat b}}_n}\left( {\frac{{{\lambda _\ell }}}{{{2^{j + 1}}}}} \right)\bar {\hat \alpha} } \\ \left( {\frac{{{\lambda _\ell }}}{{{2^{j + 1}}}}} \right){{\hat {\tilde b}}_n}\left( {\frac{{{\lambda _\ell }}}{{{2^{j + 1}}}}} \right)\hat {\tilde \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^{j + 1}}}}} \right) = \left[ {\bar {\hat \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^{j + 1}}}}} \right)\hat {\tilde \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^{j + 1}}}}} \right) + } \right.\\ \left. {\sum\limits_{n = 1}^r {{{\bar {\hat b}}_n}\left( {\frac{{{\lambda _\ell }}}{{{2^{j + 1}}}}} \right){{\hat {\tilde b}}_n}\left( {\frac{{{\lambda _\ell }}}{{{2^{j + 1}}}}} \right)} } \right]\bar {\hat \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^{j + 1}}}}} \right)\hat {\tilde \alpha} \left( {\frac{{{\lambda _\ell }}}{{{2^{j + 1}}}}} \right) \end{array} $

于是有式(13)等价于式(14),从而(ⅳ)$\Leftrightarrow $(ⅴ)。情况④得证。

综合情况①~④的证明,可得定理1成立。

定理1表明,形如式(3)的连续框架系统对序列{(CFSJ(${\mathit{\tilde \Psi }}$), CFSJ(Ψ))}J=0L2($\mathscr{M}$)中的小波双框架序列的完全等价刻画。

值得注意的是,由定理1中结论(ⅳ)~(ⅴ)可知,根据酉扩展原理构造的所有L2($\mathbb{R}$)中的小波双框架同样可生成空间L2($\mathscr{M}$)中的小波双框架,这极大地简化了流形上小波双框架的构造。

3 结束语

本文受经典双框架理论启发提出了流形小波双框架的概念,作为流形紧框架的推广,在相关小波双框架滤波器组基础上发展了流形小波双框架理论。定理1提供了空间L2($\mathscr{M}$)中一列框架系统对是小波双框架序列的完全刻画,为后续非平面域信号处理奠定了理论基础。

参考文献
[1]
Crovella M, Kolaczyk E. Graph wavelets for spatial traffic analysis[C]//IEEE IFOCOM 2003. San Francisco, USA, 2003.
[2]
Smalter A, Huan J, Lushington G. Graph wavelet alignment kernels for drug virtual screening[J]. J Bioinform Comput Biol, 2009, 7(3): 473-497. DOI:10.1142/S0219720009004187
[3]
Hammond D K, Vandergheynst P, Gribonval R. Wavelets on graphs via spectral graph theory[J]. Appl Comput Harmon Anal, 2011, 30(2): 129-150. DOI:10.1016/j.acha.2010.04.005
[4]
Narang S K, Ortega A. Perfect reconstruction two-channel wavelet filter banks for graph structured data[J]. IEEE Transactions on Signal Processing, 2012, 60(6): 2786-2799. DOI:10.1109/TSP.2012.2188718
[5]
Dong B. Sparse representation on graphs by tight wavelet frames and applications[J]. Appl Comput Harmon Anal, 2017, 42(3): 452-479. DOI:10.1016/j.acha.2015.09.005
[6]
Maggioni M, Mhaskar H N. Diffusion polynomial frames on metric measure spaces[J]. Appl Comput Harmon Anal, 2008, 24(3): 329-353. DOI:10.1016/j.acha.2007.07.001
[7]
Brauchart J S, Dick J, Saff E B, et al. Covering of spheres by spherical caps and worst-case error for equal weight cubature in Sobolev spaces[J]. J Math Anal Appl, 2015, 431(2): 782-811. DOI:10.1016/j.jmaa.2015.05.079
[8]
Han B. Pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space[J]. Appl Comput Harmon Anal, 2010, 29(3): 330-353. DOI:10.1016/j.acha.2010.01.004
[9]
Han B. Nonhomogeneous wavelet systems in high dimensions[J]. Appl Comput Harmon Anal, 2012, 32(2): 169-196. DOI:10.1016/j.acha.2011.04.002