文章快速检索     高级检索
  北京化工大学学报(自然科学版)  2017, Vol. 44 Issue (5): 123-128   DOI: 10.13543/j.bhxbzr.2017.05.020
0

引用本文  

刁林, 常延贞. 一类具有强阻尼和强时滞的拟线性粘弹性波动方程解的衰减估计[J]. 北京化工大学学报(自然科学版), 2017, 44(5): 123-128. DOI: 10.13543/j.bhxbzr.2017.05.020.
DIAO Lin, CHANG YanZhen. Uniform decay of the solution for a class of quasilinear viscoelastic wave equations with strong damping and strong delay[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2017, 44(5): 123-128. DOI: 10.13543/j.bhxbzr.2017.05.020.

第一作者

刁林, 女, 1982年生, 讲师.

通信联系人

常延贞, E-mail:changyz@mail.buct.edu.cn

文章历史

收稿日期:2017-03-17
一类具有强阻尼和强时滞的拟线性粘弹性波动方程解的衰减估计
刁林 1, 常延贞 2     
1. 商丘学院 计算机工程学院, 河南 商丘 476000;
2. 北京化工大学 理学院, 北京 100029
摘要:研究一类具有强阻尼和强时滞作用的拟线性粘弹性波动方程的初边值问题,在满足一定条件下,通过构造合适的Lyapunov泛函得到能量的衰减估计。
关键词拟线性粘弹性波动方程    衰减估计    强阻尼和强时滞    
Uniform decay of the solution for a class of quasilinear viscoelastic wave equations with strong damping and strong delay
DIAO Lin1 , CHANG YanZhen2     
1. College of Computer Science and Technology, Shangqiu University, Shangqiu, Henan 476000;
2. Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, China
Abstract: In this paper, we investigate the initial boundary value problem of a quasilinear viscoelastic wave equation with strong damping and strong delay. Under a set of assumptions, we give the energy decay estimates using a special Lyapunov function.
Key words: quasilinear viscoelastic wave equation    decay estimate    strong damping and strong delay    
引言

时滞现象广泛存在于物理学、化学、力学、经济学等研究领域。一般来说,这些现象不仅依赖于当前的状态,而且依赖于过去的状态[1-3]。近几年来,具有时滞现象的二阶发展方程相关性质的研究引起了国内外许多数学同行们的广泛关注,并且成为研究热点。

文献[2]的研究结果表明,时滞作用是使得系统不稳定的一个重要因素,即使是一个比较小的时滞作用也可以使原来稳定的系统变得不稳定,必须添加一些额外的耗散条件才可使系统再稳定。Datko[3]考虑了一维时滞波动方程

$ {u_u} = {u_{xx}} - 2{u_t}\left( {x,t - \tau } \right),\left( {x,t} \right) \in \left( {0,1} \right) \times \left( {0, + \infty } \right) $

的初边值问题,并得到时滞作用可破坏原本稳定波动方程的结论[2]

对于如下的n-维波动方程初边值问题

$ \left\{ \begin{array}{l} {u_u}\left( {x,t} \right) - \Delta u\left( {x,t} \right) + {\mu _1}\left( {x,t} \right) + {\mu _2}\left( {x,t - \tau } \right) = 0,\\ \;\;\;\;\;\;\;\;\;\left( {x,t} \right) \in \mathit{\Omega } \times \left( {0, + \infty } \right)\\ u\left( {x,0} \right) = {u_0}\left( x \right),{u_t}\left( {x,0} \right) = {u_1}\left( x \right),x \in \mathit{\Omega }\\ u\left( {x,t} \right) = 0,\left( {x,t} \right) \in {\mathit{\Gamma }_0} \times \left( {0, + \infty } \right)\\ \frac{{\partial u}}{{\partial \upsilon }}\left( {x,t} \right) = 0,\left( {x,t} \right) \in {\mathit{\Gamma }_1} \times \left( {0, + \infty } \right) \end{array} \right. $

没有时滞项(μ2=0) 时,系统呈指数型稳定状态[4];有时滞项(μ2 > 0) 时,Nicaise等[5]的研究结果表明, 当μ2 < μ1时系统稳定, 当μ2μ1时存在一列时滞使系统不稳定。

Cavalcanti等[6]首次研究了如式(1) 所示的拟线性粘弹性波动方程

$ \begin{array}{l} \;\;\;\;\;\;{\left| {{u_t}} \right|^\rho }{u_{tt}} - \Delta u - \Delta {u_{tt}} + \int_0^t {g\left( {t - s} \right)\Delta u\left( s \right){\rm{d}}s} - \\ \gamma \Delta {u_t} = F\left( {x,u,{u_t}} \right) \end{array} $ (1)

进一步,当F(x, u, ut)=0,并假设ρ > 0满足H01(Ω)→ L2(ρ+1)(Ω)时,得到了γ≥0时解的整体存在性及γ > 0时能量指数型稳定性的结果。

由于式(1) 来源于式(2)

$ f\left( {{u_t}} \right){u_{tt}} - \Delta u - \Delta {u_{tt}} = 0 $ (2)

f(ut)为常数时,Δutt项的存在使式(2) 不同于D'Alembert型波动方程[7];当f(ut)不为常数时,式(2) 表示材料的密度、浓度依赖于速率ut[8]。而当ρ=0、μ2=0及去掉Δutt项时,式(1) 变为经典的粘弹性波动方程[9-10]

Kirane等[11]研究了方程

$ \begin{array}{l} \;\;\;\;\;\;\;\;{u_{tt}} - \Delta u + \int_0^t {g\left( {t - s} \right)\Delta u\left( s \right){\rm{d}}s} + {\mu _1}{u_t}\left( {x,t} \right) + \\ {\mu _2}{u_t}\left( {x,t - \tau } \right) = 0 \end{array} $

的初边值问题,当μ2μ1时,利用Lyapunov泛函法得到了能量的衰减估计,该方程在文献[12-14]中得到了进一步研究。

此外,Messaoudi等[15]首次研究了如下具强时滞的波动方程问题

$ \left\{ \begin{array}{l} {u_{tt}}\left( {x,t} \right) - \Delta u\left( {x,t} \right) - {\mu _1}\Delta {u_t}\left( {x,t} \right) + {\mu _2}\Delta {u_t}\left( {x,t} \right) = 0,\\ \;\;\;\;\;\;\;\mathit{\Omega } \times \left( {0, + \infty } \right)\\ u\left( {x,t} \right) = 0,\\ \;\;\;\;\;\;\;\;\partial \mathit{\Omega } \times \left( {0, + \infty } \right)\\ {u_t}\left( {x,t - \tau } \right) = {f_0}\left( {x,t} \right),\\ \;\;\;\;\;\;\;\;\;t \in \left( {0,\tau } \right)\\ u\left( {x,0} \right) = {u_0}\left( x \right),{u_t}\left( {x,0} \right) = {u_1}\left( x \right),\\ \;\;\;\;\;\;\;\;t \in \mathit{\Omega } \end{array} \right. $

利用半群理论得到了该系统的整体适定性以及在一定条件下能量的衰减估计。

然而,同时具有强阻尼和强时滞性的粘弹性波动方程解的研究尚处于起步阶段,故本文在上述研究结果的基础上,考虑如下具有强阻尼与强时滞作用的拟线性粘弹性方程的初边值问题:

$ \left\{ \begin{array}{l} {\left| {{u_t}} \right|^\rho }{u_{tt}} - \Delta u - \Delta {u_{tt}} + \int_0^t {g\left( {t - s} \right)\Delta u\left( s \right){\rm{d}}s - } \\ \;\;\;\;{\mu _1}\Delta {u_t} - {\mu _2}\Delta {u_t}\left( {t - \tau } \right) = 0,\\ \;\;\;\;\left( {x,t} \right) \in \mathit{\Omega } \times \left( {0, + \infty } \right)\\ u\left( {x,0} \right) = {u_0}\left( x \right),{u_t}\left( {x,0} \right) = {u_1}\left( x \right),x \in \mathit{\Omega }\\ u\left( {x,t} \right) = 0,\left( {x,t} \right) \in \partial \mathit{\Omega } \times \left( {0, + \infty } \right)\\ u\left( {x,t - \tau } \right) = {f_0}\left( {x,t - \tau } \right),x \in \mathit{\Omega },t \in \left( {0,\tau } \right) \end{array} \right. $ (3)

其中ΩRn为一个具有光滑边界∂Ω的有界集,τ > 0代表时滞,μ1μ2为实数,(u0, u1, f0)为给定的合适初始数据。本文的目的是通过构造合适的Lyapunov泛函来研究式(1) 解的能量衰减估计。

1 预备知识

对于式(3),假设ρ满足

$ 0 < \rho \le \frac{2}{{N - 2}}\left( {N \ge 3} \right),\;aaa\;\rho > 0\left( {N = 1,2} \right) $ (4)

对于记忆核g(t),假设满足条件(H)

(H):g:R+R+是一个连续可微函数,满足$ 1 - \int_0^\infty {g\left( s \right){\rm{d}}s = l > 0} $,并且存在正的非增函数ξ(t),使得式(5) 成立。

$ g'\left( t \right) \le - \xi \left( t \right)g\left( t \right),\int_0^{ + \infty } {\xi \left( s \right){\rm{d}}s} = + \infty $ (5)

引理1  (Sobolev-Poincaré不等式)

$ 2 \le p \le \frac{{2N}}{{N - 2}} $uH01(Ω),则存在cs > 0,使得‖upcs‖Δu2

引理2  对任意的gC1(R)和ϕH1(0, T)有

$ \begin{array}{l} - 2\int_0^t {\int_\mathit{\Omega } {g\left( {t - s} \right)\phi {\phi _t}{\rm{d}}x{\rm{d}}s} } = \frac{{\rm{d}}}{{{\rm{d}}t}}\left( {\left( {g \triangleleft \phi } \right)\left( t \right) - } \right.\\ \left. {\int_0^t {g\left( s \right){\rm{d}}s\left\| \phi \right\|_2^2} } \right) + g\left( t \right)\left\| \varphi \right\|_2^2 - \left( {g' \triangleleft \phi } \right)\left( t \right) \end{array} $

其中(gϕ)(t)=$ \int_0^t {g\left( {t - s} \right){\rm{d}}s} \int_\mathit{\Omega} {{{\left| {\phi \left( s \right) - \phi \left( t \right)} \right|}^2}{\rm{d}}x{\rm{d}}s} $

进一步,定义新的变量z, 满足

$ z\left( {x,k,t} \right) = {u_t}\left( {t - \tau k} \right),x \in \mathit{\Omega ,k} \in \left( {0,1} \right) $

则有

$ \tau {z_t}\left( {x,k,t} \right) + {z_k}\left( {x,k,t} \right) = 0,\left( {x,k,t} \right) \in \mathit{\Omega } \times \left( {0,1} \right) \times \left( {0, + \infty } \right)。$

因此式(3) 可转化为式(6)

$ \left\{ \begin{array}{l} {\left| {{u_t}} \right|^\rho }{u_{tt}} - \Delta u - \Delta {u_{tt}} + \int_0^t {g\left( {t - s} \right)\Delta u\left( s \right){\rm{d}}s - } \\ \;\;\;\;{\mu _1}\Delta {u_t}\left( {x,t} \right) - {\mu _2}\Delta z\left( {x,1,t} \right) = 0,\\ \;\;\;\;\;\;\;\;\;\;\;\left( {x,t} \right) \in \mathit{\Omega } \times \left( {0, + \infty } \right)\\ {z_t}\left( {x,k,t} \right) + {z_k}\left( {x,k,t} \right) = 0,\\ \;\;\;\;\;\;\;\;\;\;\;\;x \in \mathit{\Omega ,k} \in \left( {0,1} \right),t > 0\\ z\left( {x,0,t} \right) = {u_t}\left( {x,t} \right),x \in \mathit{\Omega },t > 0\\ z\left( {x,k,0} \right) = {f_0}\left( {x, - \tau k} \right),x \in \mathit{\Omega }\\ u\left( {x,0} \right) = {u_0}\left( x \right),{u_t}\left( {x,0} \right) = {u_1}\left( x \right),x \in \mathit{\Omega }\\ u\left( {x,t} \right) = 0,x \in \mathit{\Omega },t \ge 0 \end{array} \right. $ (6)

基于引理1和引理2,结合文献[6]和[11],可以不加证明地给出解的整体存在性定理。

定理1  假设|μ2| < μ1,且式(4) 和条件(H)成立,则当u0, u1H01(Ω),f0L2((0,1),H01(Ω))时,式(6) 至少存在一弱解(u, z),且满足

$ \begin{array}{l} \;\;\;\;\;\;u,{u_t} \in C\left( {\left[ {0,T} \right],H_0^1\left( \mathit{\Omega } \right)} \right),z \in C\left( {\left[ {0,T} \right],{L^2}} \right.\\ \left. {\left( {\left( {0,1} \right),H_0^1\left( \mathit{\Omega } \right)} \right)} \right),T > 0。\end{array} $
2 能量的衰减估计

能量泛函的定义如式(7)

$ \begin{array}{l} E\left( t \right) = E\left( {t,u,z} \right) = \frac{1}{{\rho + 2}}\left\| {{u_t}} \right\|_{\rho + 2}^{\rho + 2} + \frac{1}{2}\left( {1 - } \right.\\ \left. {\int_0^t {g\left( {t - s} \right){\rm{d}}s} } \right)\left\| {\nabla u\left( t \right)} \right\| + \frac{1}{2}\left( {g \triangleleft \nabla u} \right)\left( t \right) + \\ \frac{1}{2}\left\| {\nabla \nabla {u_t}\left( t \right)} \right\|_{\rho + 2}^{\rho + 2} + \frac{\xi }{2}\int_\mathit{\Omega } {\int_0^1 {{{\left| {\nabla z\left( {x,k,t} \right)} \right|}^2}{\rm{d}}k{\rm{d}}x} } \end{array} $ (7)

其中常数ξ满足

$ \tau \left| {{\mu _2}} \right| \le \xi \le \tau \left( {2{\mu _1} - \left| {{\mu _2}} \right|} \right) $ (8)

下面基于能量泛函的定义, 进行相关的估计和证明。

引理3  设E(t)是[0, T]上的一个非增函数,且

$ \begin{array}{l} \;\;\;\;\;E'\left( t \right) \le - {c_1}{\left\| {\nabla {u_t}} \right\|^2} - {c_2}\int_\mathit{\Omega } {{{\left| {\nabla z\left( {x,1,t} \right)} \right|}^2}{\rm{d}}x} + \\ \frac{1}{2}\left( {g' \triangleleft \nabla u} \right)\left( t \right) - \frac{1}{2}g\left( t \right){\left\| {\nabla u\left( t \right)} \right\|^2} \le \frac{1}{2}\left( {g' \triangleleft } \right.\\ \left. {\nabla u} \right)\left( t \right) - \frac{1}{2}g\left( t \right){\left\| {\nabla u\left( t \right)} \right\|^2} \le 0,t \ge 0 \end{array} $ (9)

其中

$ {c_1} = \left\{ \begin{array}{l} {\mu _1} - \frac{\xi }{{2\tau }} - \frac{{\left| {{\mu _2}} \right|}}{2} > 0\;\;\;\;\;\left| {{\mu _2}} \right| < {\mu _1}\\ 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left| {{\mu _2}} \right| = {\mu _1} \end{array} \right. $
$ {c_2} = \left\{ \begin{array}{l} \frac{\xi }{{2\tau }} - \frac{{\left| {{\mu _2}} \right|}}{2} > 0\;\;\;\;\;\left| {{\mu _2}} \right| < {\mu _1}\\ 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left| {{\mu _2}} \right| = {\mu _1} \end{array} \right. $

证明  方程组(6) 的第一个方程两边同乘以ut,利用引理2得

$ \begin{array}{l} \frac{{\rm{d}}}{{{\rm{d}}t}}\left[ {\frac{1}{{\rho + 2}}\left\| {{u_t}\left( t \right)} \right\|_{\rho + 2}^{\rho + 2} + \frac{1}{2}\left( {1 - \int_0^t {g\left( s \right){\rm{d}}s} } \right)} \right.\\ \left. {\left\| {\nabla u\left( t \right)} \right\|_2^2 + \frac{1}{2}\left\| {\nabla {u_t}\left( t \right)} \right\|_2^2 + \frac{1}{2}\left( {g \triangleleft \nabla u} \right)\left( t \right)} \right] + \\ \frac{1}{2}g\left( t \right)\left\| {\nabla u\left( t \right)} \right\|_2^2 - \frac{1}{2}\left( {g' \triangleleft \nabla u} \right)\left( t \right) + {\mu _1}\left\| {\nabla {u_t}} \right.\\ \left. {\left( t \right)} \right\|_2^2 + {\mu _2}\int_\mathit{\Omega } {\nabla z\left( {x,1,t} \right) \cdot \nabla {u_t}\left( t \right){\rm{d}}x} = 0 \end{array} $ (10)

方程组(6) 的第二个方程两边同乘以$ \frac{\xi }{\tau }z $并积分得

$ \begin{array}{l} \;\;\;\;\;\;\frac{\xi }{2}\frac{{\rm{d}}}{{{\rm{d}}t}}\int_\mathit{\Omega } {\int_0^1 {{{\left| {\nabla z\left( {x,k,t} \right)} \right|}^2}{\rm{d}}k{\rm{d}}x} } + \frac{\xi }{{2\tau }}\int_\mathit{\Omega } {\left| {\nabla z\left( {x,1,} \right.} \right.} \\ {\left. {\left. t \right)} \right|^2}{\rm{d}}x - \frac{\xi }{{2\tau }}\int_\mathit{\Omega } {{{\left| {\nabla z\left( {x,0,t} \right)} \right|}^2}{\rm{d}}x} = 0 \end{array} $ (11)

联立式(10)、(11),并根据式(7) 可得

$ \begin{array}{l} E'\left( t \right) = - \left( {{\mu _1} - \frac{\xi }{{2\tau }}} \right)\left\| {\nabla {u_t}\left( s \right)} \right\|_2^2 - \frac{\xi }{{2\tau }}\int_\mathit{\Omega } {\left| {\nabla {z_n}} \right.} \\ {\left. {\left( {x,1,s} \right)} \right|^2}{\rm{d}}x - {\mu _2}\int_0^t {\int_\mathit{\Omega } {\nabla z\left( {x,1,s} \right) \cdot \nabla {u_t}\left( s \right){\rm{d}}x{\rm{d}}s} } - \frac{1}{2}\\ g\left( t \right)\left\| {\nabla u\left( t \right)} \right\|_2^2 + \frac{1}{2}\left( {g' \triangleleft \nabla u} \right)\left( t \right) \end{array} $ (12)

进一步,对式(12) 右端第三项利用杨不等式

$ \left( {ab \le \frac{1}{2}{a^2} + {\rm{ }}\frac{1}{2}{b^2}} \right) $进行估计,即可得式(9)。证毕。

注:由E(t)的定义式(7) 和引理3可知,能量是一致有界的,故式(6) 的解是整体存在的。

为了本文主要结论证明的需要和便利,现给出如下几个公式的定义。

$ L\left( t \right) = ME\left( t \right) + {\varepsilon _1}\varphi \left( t \right) + {\varepsilon _2}I\left( t \right) + \chi \left( t \right) $

其中Mε2ε1是待定的正常数。

$ \varphi \left( t \right) = \frac{1}{{\rho + 1}}\int_\mathit{\Omega } {{{\left| {{u_t}} \right|}^\rho }{u_t}u{\rm{d}}x} + \int_\mathit{\Omega } {\nabla {u_t}\left( t \right) \cdot \nabla u\left( t \right){\rm{d}}x} $ (13)
$ I\left( t \right) = \tau \int_0^1 {\int_\mathit{\Omega } {{{\rm{e}}^{ - k\tau }}{{\left| {\nabla z\left( {x,1,t} \right)} \right|}^2}{\rm{d}}x{\rm{d}}k} } $ (14)
$ \chi \left( t \right) = \int_\mathit{\Omega } {\left( {\nabla {u_t} - \frac{1}{{\rho + 1}}{{\left| {{u_t}} \right|}^\rho }{u_t}} \right)} \int_0^t {g\left( {t - s} \right)\left( {u\left( t \right) - u\left( s \right)} \right){\rm{d}}s{\rm{d}}x} $ (15)

进一步,可以得到引理4的结论。

引理4  若(u, z)为式(4) 的解,则L(t)~E(t),即存在α1α2 > 0,使得M足够大时,有

$ {\alpha _1}E\left( t \right) \le L\left( t \right) \le {\alpha _2}E\left( t \right),\forall t \ge 0。$

证明  首先,由E(t)的定义式(7)、引理3和条件(H),有

$ l\left\| {\nabla u\left( t \right)} \right\|_2^2 + \left\| {\nabla {u_t}} \right\|_2^2 \le 2E\left( t \right) \le 2E\left( 0 \right),\forall t \ge 0 $ (16)
$ \begin{array}{l} \;\;\;\;\;\;\left| {\frac{1}{{\rho + 1}}\int_\mathit{\Omega } {{{\left| {{u_t}} \right|}^\rho }{u_t}u{\rm{d}}x} } \right| \le \frac{1}{{\rho + 2}}\left\| {\nabla {u_t}} \right\|_2^2 + \\ \frac{{C_s^{\rho + 2}}}{{\left( {\rho + 2} \right)\left( {\rho + 1} \right)}}{\left( {\frac{{2E\left( 0 \right)}}{l}} \right)^{\frac{\rho }{2}}}\left\| {\nabla u} \right\|_2^2 \end{array} $ (17)
$ \left| {\int_\mathit{\Omega } {\nabla {u_t}\left( t \right) \cdot \nabla u\left( t \right){\rm{d}}x} } \right| \le \frac{1}{2}\left\| {\nabla {u_t}} \right\|_2^2 + \frac{1}{2}\left\| {\nabla u} \right\|_2^2 $ (18)
$ \left| {I\left( t \right)} \right| \le {c_3}\int_\mathit{\Omega } {\int_0^1 {{{\left| {\nabla z\left( {x,k,t} \right)} \right|}^2}{\rm{d}}k{\rm{d}}x} } ,{c_3} > 0 $ (19)

其次,利用杨不等式估计χ(t),有

$ \begin{array}{l} \;\;\;\;\;\;\left| { - \int_\mathit{\Omega } {\nabla {u_t}} \int_0^t {g\left( {t - s} \right)\left( {\nabla u\left( t \right) - \nabla u\left( s \right)} \right){\rm{d}}s{\rm{d}}x} } \right| \le \\ \frac{1}{2}\left\| {\nabla {u_t}\left( t \right)} \right\|_2^2 + \frac{{1 - l}}{2}\left( {g \triangleleft \nabla u} \right)\left( t \right) \end{array} $ (20)
$ \begin{array}{l} \;\;\left| { - \frac{1}{{\rho + 1}}\int_\mathit{\Omega } {{{\left| {{u_t}} \right|}^\rho }{u_t}} \int_0^t {g\left( {t - s} \right)\left( {\nabla u\left( t \right) - \nabla u\left( s \right)} \right)} } \right.\\ \left. {{\rm{d}}s{\rm{d}}x} \right| \le \frac{1}{{\rho + 2}}\left( {\left\| {\nabla {u_t}} \right\|_2^2 + \frac{{{{\left( {1 - l} \right)}^{\rho + 1}}C_s^{\rho + 2}}}{{\rho + 1}}} \right.\\ {\left( {\frac{{8E\left( 0 \right)}}{l}} \right)^{\frac{\rho }{2}}}\left( {g \triangleleft \nabla u} \right)\left( t \right) \end{array} $ (21)

进而,联立式(17)~(21),有

$ \begin{array}{l} \left| {L\left( t \right) - ME\left( t \right)} \right| = {\varepsilon _1}\varphi \left( t \right) + {\varepsilon _2}I\left( t \right) + \chi \left( t \right) \le \\ C\left( {\left\| {{u_t}} \right\|_{\rho + 2}^{\rho + 2} + \left\| {\nabla u} \right\|_2^2 + \left\| {\nabla {u_t}} \right\|_2^2 + \left( {g \triangleleft \nabla u} \right)\left( t \right) + } \right.\\ \left. {\int_0^1 {\int_\mathit{\Omega } {{{\left| {\nabla z\left( {x,k,t} \right)} \right|}^2}{\rm{d}}x{\rm{d}}k} } } \right) \le {c_4}E\left( t \right)。\end{array} $

最后,由式(7) 知,取M足够大时,存在正数α1α2,使得

$ {\alpha _1}E\left( t \right) \le L\left( t \right) \le {\alpha _2}E\left( t \right) $

成立。证毕。

基于上述所有引理和定理的结果,下面给出本文的核心结论。

定理2  设u0, u1H01(Ω),f0L2((0, 1),H01(Ω)),并且条件(H)、式(4)、式(8) 及|μ2|≤μ1成立,则对于∀t0 > 0,存在正常数Kω,使得式(22) 成立

$ E\left( t \right) \le K{{\rm{e}}^{ - \omega }}\int_{{t_0}}^t {\xi \left( s \right){\rm{d}}s} ,\forall t > {t_0} $ (22)

证明  第一步,证明L′(t)的估计。分步证明如下。

1) 估计φ′(t)由式(13) 及式(6) 得

$ \begin{array}{l} \;\;\;\;\;\;\varphi '\left( t \right) = - \left\| {\nabla u} \right\|_2^2 + \int_\mathit{\Omega } {\nabla u\left( t \right)} \cdot \int_0^t {g\left( {t - s} \right)\nabla u} \\ \left( s \right){\rm{d}}s{\rm{d}}x - {\mu _1}\int_\mathit{\Omega } {\nabla u \cdot \nabla {u_t}{\rm{d}}x} - {\mu _2}\int_\mathit{\Omega } {\nabla u \cdot \nabla z\left( {x,1,t} \right)} \\ {\rm{d}}x + \frac{1}{{\rho + 1}}\left\| {{u_t}} \right\|_{\rho + 2}^{\rho + 2} + \left\| {\nabla {u_t}} \right\|_2^2 \end{array} $ (23)

现估计式(23) 中第2、3、4项,不妨分别记为I1I2I3,则有

$ \begin{array}{l} \;\;\;\;\;\;\left| {{I_1}} \right| = \left| {\int_\mathit{\Omega } {\nabla u\left( t \right)} \cdot \int_0^t {g\left( {t - s} \right)\left( {\nabla u\left( s \right) - \nabla u\left( t \right) + } \right.} } \right.\\ \left. {\left. {\nabla u\left( t \right)} \right){\rm{d}}s{\rm{d}}x} \right| \le \eta \left\| {\nabla u} \right\|_2^2 + \frac{1}{{4\eta }}\int_\mathit{\Omega } {\left( {\int_0^t {g\left( {t - s} \right)} } \right.} \\ {\left. {\left| {\nabla u\left( s \right) - \nabla u\left( t \right)} \right|{\rm{d}}s} \right)^2}{\rm{d}}x + \int_0^t {g\left( {t - s} \right){\rm{d}}s\left\| {\nabla u} \right\|_2^2} \le \eta \\ \left\| {\nabla u\left( t \right)} \right\|_2^2 + \frac{1}{{4\eta }}\left( {1 - l} \right)\left( {g \triangleleft \nabla u} \right)\left( t \right) + \left( {1 - l} \right)\\ \left\| {\nabla u} \right\|_2^2; \end{array} $
$ \left| {{I_2}} \right| \le \eta \left\| {\nabla u} \right\|_2^2 + \frac{{\mu _1^2}}{{4\eta }}\left\| {\nabla {u_t}} \right\|_2^2; $
$ \left| {{I_3}} \right| \le \eta \left\| {\nabla u} \right\|_2^2 + \frac{{\mu _2^2}}{{4\eta }}\left\| {\nabla z\left( {x,1,t} \right)} \right\|_2^2。$

$ \eta = \frac{l}{4} $,则可得

$ \begin{array}{l} \;\;\;\;\;\;\;\varphi '\left( t \right) \le - \frac{l}{4}\left\| {\nabla u} \right\|_2^2 + \frac{{1 - l}}{l}\left( {g \triangleleft \nabla u} \right)\left( t \right) + \\ \left( {\frac{{\mu _1^2}}{l} + 1} \right)\left\| {\nabla {u_t}} \right\|_2^2 + \frac{{\mu _2^2}}{4}\left\| {\nabla z\left( {x,1,t} \right)} \right\|_2^2 + \frac{1}{{\rho + 2}}\left\| {{u_t}} \right\|_{\rho + 2}^{\rho + 2} \end{array} $ (24)

2) 估计I′(t)由式(14) 和文献[16], 容易得式(25) 成立

$ \begin{array}{l} \;\;\;\;\;I'\left( t \right) \le \left\| {\nabla {u_t}} \right\|_2^2 - {{\rm{e}}^{ - \tau }}\left\| {\nabla z\left( {x,1,t} \right)} \right\|_2^2 - \\ \tau {{\rm{e}}^{ - \tau }}\int_0^1 {\int_\mathit{\Omega } {{{\left| {\nabla z\left( {x,1,t} \right)} \right|}^2}{\rm{d}}x{\rm{d}}k} } \end{array} $ (25)

3) 估计χ′(t)由方程(6) 得

$ \begin{array}{l} \;\;\;\;\;\chi '\left( t \right) = \int_\mathit{\Omega } {\nabla u\left( t \right)} \cdot \int_0^t {g\left( {t - s} \right)\left( {\nabla u\left( t \right) - \nabla u\left( s \right)} \right)} \\ {\rm{d}}s{\rm{d}}x - \int_\mathit{\Omega } {\left( {\int_0^t {g\left( {t - s} \right)\nabla u\left( s \right){\rm{d}}s} } \right)} \cdot \left( {\int_0^t {g\left( {t - s} \right)\left( {\nabla u} \right.} } \right.\\ \left. {\left. {\left( t \right) - \nabla u\left( s \right)} \right){\rm{d}}s} \right){\rm{d}}x + {\mu _1}\int_\mathit{\Omega } {\nabla u\left( t \right)} \cdot \int_0^t {g\left( {t - s} \right)\left( {\nabla u} \right.} \\ \left. {\left( t \right) - \nabla u\left( s \right)} \right){\rm{d}}s{\rm{d}}x + {\mu _2}\int_\mathit{\Omega } {\nabla z\left( {x,1,t} \right)} \cdot \int_0^t {g\left( {t - s} \right)\left( {\nabla u} \right.} \\ \left. {\left( t \right) - \nabla u\left( s \right)} \right){\rm{d}}s{\rm{d}}x - \int_\mathit{\Omega } {\nabla {u_t}} \cdot \int_0^t {g'\left( {t - s} \right)\left( {\nabla u\left( t \right) - \nabla u} \right.} \\ \left. {\left( s \right)} \right){\rm{d}}s{\rm{d}}x - \frac{1}{{\rho + 1}}\int_\mathit{\Omega } {{{\left| {{u_t}} \right|}^\rho }{u_t}} \int_0^t {g'\left( {t - s} \right)\left( {\nabla u\left( t \right) - \nabla u} \right.} \\ \left. {\left( s \right)} \right){\rm{d}}s{\rm{d}}x - \left( {\int_0^t {g\left( s \right){\rm{d}}s} } \right)\left\| {\nabla {u_t}} \right\|_2^2 - \frac{1}{{\rho + 1}}\left( {\int_0^t {g\left( s \right)} } \right.\\ \left. {{\rm{d}}s} \right)\left\| {{u_t}} \right\|_{\rho + 2}^{\rho + 2} \end{array} $ (26)

式(26) 等号右边共有7项,下面对前6项分别进行估计如下:

第1项

$ \begin{array}{l} \;\;\;\;\;\;\;\left| {\int_\mathit{\Omega } {\nabla {u_t}} \cdot \int_0^t {g\left( {t - s} \right)\left( {\nabla u\left( t \right) - \nabla u\left( s \right)} \right){\rm{d}}s{\rm{d}}x} } \right| \le \\ \delta \left\| {\nabla u} \right\|_2^2 + \frac{{1 - l}}{{4\delta }}\left( {g \triangleleft \nabla u} \right)\left( t \right); \end{array} $

第2项

$ \begin{array}{l} \;\;\;\;\;\;\;\left| {\int_\mathit{\Omega } {\left( {\int_0^t {g\left( {t - s} \right)\nabla u\left( s \right){\rm{d}}s} } \right)} \cdot \left( {\int_0^t {g\left( {t - s} \right)\left( {\nabla u} \right.} } \right.} \right.\\ \left. {\left. {\left. {\left( t \right) - \nabla u\left( s \right)} \right){\rm{d}}s} \right){\rm{d}}x} \right| \le 2\delta \left( {1 - l} \right)\left\| {\nabla u} \right\|_2^2 + \left( {2\delta + } \right.\\ \left. {\frac{1}{{4\delta }}} \right)\left( {1 - l} \right)\left( {g \triangleleft \nabla u} \right)\left( t \right),\delta > 0; \end{array} $

第3项

$ \begin{array}{l} \;\;\;\;\;\;\;\left| {{\mu _1}} \right.\int_\mathit{\Omega } {\nabla {u_t}\left( t \right)} \cdot \int_0^t {g\left( {t - s} \right)\left( {\nabla u\left( t \right) - \nabla u\left( s \right)} \right)} \\ \left. {{\rm{d}}s{\rm{d}}x} \right| \le {\delta _1}\left\| {\nabla {u_t}} \right\|_2^2 + \frac{{\mu _1^2\left( {1 - l} \right)}}{{4{\delta _1}}}\left( {g \triangleleft \nabla u} \right)\left( t \right),{\delta _1} > 0; \end{array} $

第4项

$ \begin{array}{l} \;\;\;\;\;\;\;\left| {{\mu _2}} \right.\int_\mathit{\Omega } {\nabla z\left( {x,1,t} \right)} \cdot \int_0^t {g\left( {t - s} \right)\left( {\nabla u\left( t \right) - \nabla u\left( s \right)} \right)} \\ \left. {{\rm{d}}s{\rm{d}}x} \right| \le {\delta _2}\left\| {\nabla z\left( {x,1,t} \right)} \right\|_2^2 + \frac{{\mu _1^2\left( {1 - l} \right)}}{{4{\delta _2}}}\left( {g \triangleleft \nabla u} \right)\left( t \right),\\ {\delta _2} > 0; \end{array} $

第5项

$ \begin{array}{l} \;\;\;\;\;\;\;\;\left| {\int_\mathit{\Omega } {\nabla {u_t}} \cdot \int_0^t {g'\left( {t - s} \right)\left( {\nabla u\left( t \right) - \nabla u\left( s \right)} \right){\rm{d}}s{\rm{d}}x} } \right| \le \\ {\delta _3}\left\| {\nabla {u_t}} \right\|_2^2 + \frac{1}{{4{\delta _3}}}\int_\mathit{\Omega } {\left( {\int_0^t {g'\left( {t - s} \right)\left( {\nabla u\left( t \right) - \nabla u\left( s \right)} \right)} } \right.} \\ {\left. {{\rm{d}}s} \right)^2}{\rm{d}}x \le {\delta _3}\left\| {\nabla {u_t}} \right\|_2^2 + \frac{{g\left( 0 \right)}}{{4{\delta _3}}}\left( {g' \triangleleft \nabla u} \right)\left( t \right),{\delta _3} > 0; \end{array} $

第6项

$ \begin{array}{l} \;\;\;\;\;\;\;\;\left| {\frac{1}{{\rho + 1}}\int_\mathit{\Omega } {{{\left| {{u_t}} \right|}^\rho }{u_t}} \int_0^t {g'\left( {t - s} \right)\left( {\nabla u\left( t \right) - \nabla u\left( s \right)} \right)} } \right.\\ \left. {{\rm{d}}s{\rm{d}}x} \right| \le \frac{1}{{\rho + 1}}\left( {{\delta _4}\left\| {{u_t}} \right\|_{2\left( {\rho + 1} \right)}^{2\left( {\rho + 1} \right)} + \frac{1}{{4{\delta _4}}}\int_\mathit{\Omega } {\left( {\int_0^t {g'\left( {t - s} \right)} } \right.} } \right.\\ \left. {\left. {{{\left( {\nabla u\left( t \right) - \nabla u\left( s \right)} \right)}^2}{\rm{d}}x} \right){\rm{d}}s} \right) \le \frac{{{\delta _4}c_s^{2\left( {\rho + 1} \right)}}}{{\rho + 1}}{\left( {2E\left( 0 \right)} \right)^\rho }\\ \left\| {\nabla {u_t}} \right\|_2^2 - \frac{{g\left( 0 \right)c_s^2}}{{4{\delta _4}\left( {\rho + 1} \right)}}\left( {g' \triangleleft \nabla u} \right)\left( t \right),{\delta _4} > 0。\end{array} $

第二步,分别估计式(26) 等号右边的每一项。将第1~6项的估计式代入χ′(t)得

$ \begin{array}{l} \;\;\;\;\;\;\chi '\left( t \right) \le \delta {c_4}\left\| {\nabla u} \right\|_2^2 + {c_5}\left( {g \triangleleft \nabla u} \right)\left( t \right) - {c_6}\left( {g' \triangleleft } \right.\\ \left. {\nabla u} \right)\left( t \right) + \left( {{c_7} - \int_0^t {g\left( s \right){\rm{d}}s} } \right)\left\| {\nabla {u_t}} \right\|_2^2 + {\delta _2}\left\| {\nabla z\left( {x,1,} \right.} \right.\\ \left. {\left. t \right)} \right\|_2^2 - \frac{1}{{\rho + 1}}\left( {\int_0^t {g\left( s \right){\rm{d}}s} } \right)\left\| {{u_t}} \right\|_2^2 \end{array} $ (27)

其中

$ {c_4} = 1 + 2{\left( {1 - l} \right)^2}, $
$ {c_5} = \left( {2\delta + \frac{1}{{2\delta }} + \frac{{\mu _1^2}}{{4{\delta _1}}} + \frac{{\mu _2^2}}{{4{\delta _2}}}} \right)\left( {1 - l} \right), $
$ {c_6} = \frac{{g\left( 0 \right)c_s^2}}{{4{\delta _4}\left( {\rho + 1} \right)}} + \frac{{g\left( 0 \right)}}{{4{\delta _3}}}, $
$ {c_7} = {\delta _1} + {\delta _3} + \frac{{{\delta _4}c_s^{2\left( {\rho + 1} \right)}}}{{\rho + 1}}{\left( {2E\left( 0 \right)} \right)^\rho }。$

g(0) > 0以及条件(H)得,∀t0 > 0,

$ \int_0^t {g\left( s \right){\rm{d}}s} \ge \int_0^{{t_0}} {g\left( s \right){\rm{d}}s} = {g_0},\forall t \ge {t_0}。$

根据引理3,将式(24)~(27) 代入L′(t)得

$ \begin{array}{l} \;\;\;\;\;\;\;\;L'\left( t \right) = ME'\left( t \right) + {\varepsilon _1}\varphi '\left( t \right) + {\varepsilon _2}I'\left( t \right) + \chi '\left( t \right) \le \\ \left( {\frac{M}{2} - {c_6}} \right)\left( {g' \triangleleft \nabla u} \right)\left( t \right) - \frac{{{g_0} - {\varepsilon _1}}}{{\rho + 1}}\left\| {{u_t}} \right\|_{\rho + 2}^{\rho + 2} - \left( {\frac{l}{4}{\varepsilon _1} - } \right.\\ \left. {\delta {c_4}} \right)\left\| {\nabla u} \right\|_2^2 - \left( {{g_0} - {c_7} - {\varepsilon _2} - \left( {\frac{{\mu _1^2}}{l} + 1} \right){\varepsilon _1}} \right)\left\| {\nabla u} \right\| - \\ \left( {{\varepsilon _2}{{\rm{e}}^{ - \tau }} - {\varepsilon _1}\frac{{\mu _2^2}}{4} - {\delta _2}} \right)\left\| {\nabla z\left( {x,1,t} \right)} \right\|_2^2 - \tau {{\rm{e}}^{ - \tau }}\\ \int_0^1 {\int_\mathit{\Omega } {\left| {\nabla z\left( {x,k,t} \right)} \right|{\rm{d}}x{\rm{d}}s} } + \left( {\frac{{\left( {1 - l} \right){\varepsilon _1}}}{l} + {c_5}} \right)\left( {g \triangleleft } \right.\\ \left. {\nabla u} \right)\left( t \right)。\end{array} $

现选取合适的εi(i=1, 2) 和δj(j=1, 2, 3, 4),使得存在正常数β1β2满足式(28)

$ L'\left( t \right) \le - {\beta _1}E\left( t \right) + {\beta _2}\left( {g \triangleleft \nabla u} \right)\left( t \right),\forall t \ge {t_0} $ (28)

δ1=δ3=δ4足够小,使得

$ {c_7} = {\delta _1}\left( {2 + \frac{{c_s^{2\left( {\rho + 1} \right)}}}{{\rho + 1}}{{\left( {2E\left( 0 \right)} \right)}^\rho }} \right) \le \frac{{{g_0}}}{2}; $

然后取ε2 > 0足够小,使得$ {\varepsilon _2} \le \frac{{{g_0}}}{8} $,则

g0-c7-ε2$ \frac{3}{8}{g_0} $成立;ε取定后,选取δ2$ \frac{{{\varepsilon _2}{{\rm{e}}^{{\rm{ - }}\tau }}}}{2} $。进一步选取ε足够小,使得

$ {\varepsilon _1} < \min \left\{ {{g_0},\frac{{\frac{{{g_0}}}{8}}}{{\frac{{\mu _1^2}}{l} + 1}},\frac{{{\varepsilon _2}{{\rm{e}}^{ - \tau }}}}{{\mu _2^2}}} \right\}; $

ε固定后,选取δ > 0足够小,使得$ \delta < \frac{{l{\varepsilon _1}}}{{8{c_4}}} $;最后选取M足够大,使得M > 4c6。最后由式(7) 可得式(28) 成立。

第三步,用ξ(t)同乘以式(27) 的两边,进而可得

$ \xi \left( t \right)L'\left( t \right) \le - {\beta _1}\xi \left( t \right)E\left( t \right) + {\beta _2}\xi \left( t \right)\left( {g \triangleleft \nabla u} \right)\left( t \right) $

由引理3及g′(t)≤-ξ(t)g(t),易得-(g◁∇u)(t)≤-2E′(t),进而可有

$ \begin{array}{l} \;\;\;\;\;\;\xi \left( t \right)L'\left( t \right) \le - {\beta _1}\xi \left( t \right)E\left( t \right) - {\beta _2}\left( {g \triangleleft \nabla u} \right)\left( t \right) \le \\ - {\beta _1}\xi \left( t \right)E\left( t \right) - 2{\beta _2}E'\left( t \right),\forall t \ge {t_0}。\end{array} $

现定义H(t)=ξ(t)L(t)+2β2E(t),易证H(t)等价于E(t)。由式(26) 可知

$ \begin{array}{l} \;\;\;\;\;H'\left( t \right) = \xi '\left( t \right)L\left( t \right) - {\beta _1}\xi \left( t \right)E\left( t \right) \le - {\beta _1}\xi \left( t \right)E\\ \left( t \right) \le - {\beta _3}\xi \left( t \right)H\left( t \right),\forall t \ge {t_0} \end{array} $ (29)

将式(29) 在(t0, t)上积分,得

$ H\left( t \right) \le H\left( 0 \right){{\rm{e}}^{ - {\beta _3}\int_{{t_0}}^t {\xi \left( s \right){\rm{d}}s} }},\forall t \ge {t_0}。$

故由关系式H(t)等价于E(t)得

$ E\left( t \right) \le K{{\rm{e}}^{ - \omega \int_{{t_0}}^t {\xi \left( s \right){\rm{d}}s} }},\forall t \ge {t_0}。$

其中Kω为正常数。证毕。

3 举例说明

1) 当g(t)=a(1+t)-ν(a > 0,ν > 1) 时,ξ(t)=$ \frac{\nu }{{1 + t}} $满足式(5),则由式(22) 可知

$ E\left( t \right) \le K{\left( {1 + t} \right)^{ - \omega }}; $

2) 当g(t)=ae-b(1+t)ν, 且ab > 0, 0 < ν≤1时,ξ(t)=(1+t)ν-1满足式(5),由式(22) 可知

$ E\left( t \right) \le K{{\rm{e}}^{ - \omega \left( {1 + t} \right)v}}; $

3) 当g(t)=ae-blnν(1+t), 且ab > 0,ν > 1时,ξ(t)=$ \frac{{b\nu {\rm{l}}{{\rm{n}}^{\nu - 1}}\left( {1 + t} \right)}}{{1 + t}} $满足式(5),由式(22) 可知

$ E\left( t \right) \le K{{\rm{e}}^{ - \omega {{\ln }^v}\left( {1 + t} \right)}}; $

4) 当g(t)=$ \frac{a}{{\left( {1 + t} \right){\rm{l}}{{\rm{n}}^\nu }\left( {1 + t} \right)}} $, 且a > 0,ν > 1时,ξ(t)=$ \frac{{\nu + {\rm{ln}}\left( {1 + t} \right)}}{{\left( {1 + t} \right){\rm{l}}{{\rm{n}}^\nu }\left( {1 + t} \right)}} $满足式(5),由式(22) 可知

$ E\left( t \right) \le K{\left( {\left( {1 + t} \right){{\ln }^v}\left( {1 + t} \right)} \right)^{ - \omega }}。$
4 结束语

本文通过构造合适的Lyapunov泛函,研究了一类具有强阻尼和强时滞作用的粘弹性方程的初边值问题,得到了该系统能量的衰减估计。

参考文献
[1]
Abdallah C, Dorato P, Benitez-Read J, et al. Delayed positive feedback can stabilize oscillatory system[J]. ACC San Francisco, 1993, 16(2): 3106-3107.
[2]
Xu G Q, Yung S P, Li L K. Stabilization of wave systems with input delay in the boundary control[J]. ESAIM Control Optim Calc Var, 2006, 12: 770-785. DOI:10.1051/cocv:2006021
[3]
Datko R. Representation of solutions and stability of linear differential-difference equations in Banach space[J]. J Differ Equations, 1978, 29(1): 105-166. DOI:10.1016/0022-0396(78)90043-8
[4]
Zuazua Enrike I. Exponential decay for the semi-linear wave equation with locally distributed damping[J]. Commun Partial Differ Equations, 1990, 15(2): 205-235. DOI:10.1080/03605309908820684
[5]
Nicaise S, Pignotti C. Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[J]. SIAM J Control Optim, 2006, 45(5): 1561-1585. DOI:10.1137/060648891
[6]
Cavalcanti M M, Cavalcanti V N D, Ferreira J. Existence and uniform decay for a non-linear viscoelastic equation with strong damping[J]. Math Methods Appl Sci, 2001, 24(14): 1043-1053. DOI:10.1002/(ISSN)1099-1476
[7]
Love A E H. Treatise on the mathematical theory of elasticity[M]. Cambridge, UK: Cambridge University Press, 1892.
[8]
Araújo R D O, Ma T F, Qin Y M. Long-time behavior of a quasilinear viscoelastic equation with past history[J]. J Differ Equations, 2013, 254(10): 4066-4087. DOI:10.1016/j.jde.2013.02.010
[9]
Guesmia A, Messaoudi S A. A general decay result for a viscoelastic equation in the presence of past and finite history memories[J]. Nonlinear Anal Real World Appl, 2012, 13(1): 476-485. DOI:10.1016/j.nonrwa.2011.08.004
[10]
Aassila M, Cavalcanti M M, Soriano J A. Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain[J]. SIAM J Control Optim, 2000, 38(5): 1581-1602. DOI:10.1137/S0363012998344981
[11]
Kirane M, Said-Houari B. Existence and asymptotic stability of a viscoelastic wave equation with a delay[J]. Z Angew Math Phys, 2011, 62: 1065-1082. DOI:10.1007/s00033-011-0145-0
[12]
Dai Q Y, Yang Z F. Global existence and exponential decay of the solution for a viscoelastic wave equation with a delay[J]. Z Angew Math Phys, 2014, 65(5): 885-903. DOI:10.1007/s00033-013-0365-6
[13]
Liu G W, Zhang H W. Well-posedness for a class of wave equation with past history and a delay[J]. Z Angew Math Phys, 2016, 67(1): 1-14. DOI:10.1007/s00033-015-0604-0
[14]
Feng B W. Well-posedness and exponential stability for a plate equation with time-varying delay and past history[J]. Z Angew Math Phys, 2017, 68(1): 6. DOI:10.1007/s00033-016-0753-9
[15]
Messaoudi S A, Fareh A, Doudi N. Well posedness and exponential stability in a wave equation with a strong damping and a strong delay[J]. J Math Phys, 2016, 57(11): 103-121.
[16]
Wu S T. Asymptotic behavior for a viscoelastic wave equation with a delay term[J]. Taiwan J Math, 2013, 17(3): 765-784. DOI:10.11650/tjm.17.2013.2517